Home
Class 11
MATHS
If veca,vecb,vecc and vecd are unit vect...

If `veca,vecb,vecc and vecd` are unit vectors such that `(vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2` then (A) `veca,vecb,vecc` are non coplanar (B) `vecb,vecc, vecd` are non coplanar (C) `vecb, vecd` are non paralel (D) `veca, vecd` are paralel and `vecb, vecc` are parallel

A

`veca, vecb and vecc` are non- coplanar

B

`vecb, vecc and vecd` are non-coplanar

C

`vecb and vecd` are non- parallel

D

`veca and vecd` are parallel and `vecb and vecc` are parallel

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions involving the unit vectors \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \). ### Step 1: Analyze the first condition The first condition given is: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1 \] Since \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \) are unit vectors, we can express the magnitudes of their cross products: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta_1 = 1 \cdot 1 \cdot \sin \theta_1 = \sin \theta_1 \] \[ |\vec{c} \times \vec{d}| = |\vec{c}| |\vec{d}| \sin \theta_2 = 1 \cdot 1 \cdot \sin \theta_2 = \sin \theta_2 \] Thus, we can rewrite the first condition as: \[ \sin \theta_1 \sin \theta_2 \cos \phi = 1 \] where \( \phi \) is the angle between \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \). ### Step 2: Determine the angles Since \( \sin \theta_1 \) and \( \sin \theta_2 \) can only take values between 0 and 1, the only way for their product to equal 1 is if both \( \sin \theta_1 = 1 \) and \( \sin \theta_2 = 1 \), which implies: \[ \theta_1 = 90^\circ \quad \text{and} \quad \theta_2 = 90^\circ \] This means \( \vec{a} \) is perpendicular to \( \vec{b} \) and \( \vec{c} \) is perpendicular to \( \vec{d} \). ### Step 3: Analyze the angle \( \phi \) Since \( \cos \phi = 1 \), we have: \[ \phi = 0^\circ \] This indicates that \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \) are parallel. ### Step 4: Analyze the second condition The second condition given is: \[ \vec{a} \cdot \vec{c} = \frac{1}{2} \] Let \( \theta_3 \) be the angle between \( \vec{a} \) and \( \vec{c} \): \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos \theta_3 = 1 \cdot 1 \cdot \cos \theta_3 = \cos \theta_3 = \frac{1}{2} \] This implies: \[ \theta_3 = 60^\circ \quad \text{(or \( \frac{\pi}{3} \) radians)} \] ### Step 5: Visualize the vectors Now we can visualize the vectors: - \( \vec{a} \) and \( \vec{b} \) are perpendicular. - \( \vec{c} \) and \( \vec{d} \) are perpendicular. - The angle between \( \vec{a} \) and \( \vec{c} \) is \( 60^\circ \). ### Step 6: Determine coplanarity and parallelism Since \( \vec{a} \) is perpendicular to \( \vec{b} \) and \( \vec{c} \) is perpendicular to \( \vec{d} \), and both pairs of vectors are in the same plane, we can conclude that: - \( \vec{a}, \vec{b}, \vec{c} \) are coplanar. - \( \vec{b}, \vec{c}, \vec{d} \) are also coplanar. ### Conclusion From the analysis: - \( \vec{b} \) and \( \vec{d} \) are not parallel because they can form angles of \( 60^\circ \) or \( 120^\circ \). - \( \vec{a} \) and \( \vec{d} \) are not parallel either. Thus, the correct option is: (C) \( \vec{b}, \vec{d} \) are non-parallel.

To solve the problem, we need to analyze the given conditions involving the unit vectors \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \). ### Step 1: Analyze the first condition The first condition given is: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1 \] Since \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \) are unit vectors, we can express the magnitudes of their cross products: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

find x,y, and z if x veca+yvecb+zvecc=vecd and veca,vecb,vecc are non coplanar.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |