Home
Class 11
MATHS
Two adjacent sides of a parallelogram ...

Two adjacent sides of a parallelogram `A B C D` are given by ` vec A B=2 hat i+10 hat j+11 hat ka n d vec A D=- hat i+2 hat j+2 hat kdot` The side `A D` is rotated by an acute angle `alpha` in the plane of the parallelogram so that `A D` becomes `A D^(prime)dot` If `A D '` makes a right angle with the side `A B ,` then the cosine of the angel `alpha` is given by a. `8/9` b. `(sqrt(17))/9` c. `1/9` d. `(4sqrt(5))/9`

A

`8/9`

B

`sqrt17/9`

C

`1/9`

D

`(4sqrt5)/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the mathematical approach outlined in the video transcript. ### Step 1: Identify the vectors We are given two vectors: - \( \vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k} \) - \( \vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k} \) ### Step 2: Calculate the dot product of the vectors The dot product \( \vec{AB} \cdot \vec{AD} \) is calculated as follows: \[ \vec{AB} \cdot \vec{AD} = (2)(-1) + (10)(2) + (11)(2) \] Calculating each term: \[ = -2 + 20 + 22 = 40 \] ### Step 3: Calculate the magnitudes of the vectors Now we find the magnitudes of \( \vec{AB} \) and \( \vec{AD} \). For \( \vec{AB} \): \[ |\vec{AB}| = \sqrt{2^2 + 10^2 + 11^2} = \sqrt{4 + 100 + 121} = \sqrt{225} = 15 \] For \( \vec{AD} \): \[ |\vec{AD}| = \sqrt{(-1)^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 4: Calculate the cosine of the angle between the vectors Using the dot product and magnitudes, we can find the cosine of the angle \( \theta \) between \( \vec{AB} \) and \( \vec{AD} \): \[ \cos(\theta) = \frac{\vec{AB} \cdot \vec{AD}}{|\vec{AB}| |\vec{AD}|} = \frac{40}{15 \cdot 3} = \frac{40}{45} = \frac{8}{9} \] ### Step 5: Find the sine of the angle To find \( \sin(\theta) \), we use the identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Calculating \( \sin^2(\theta) \): \[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \left(\frac{8}{9}\right)^2 = 1 - \frac{64}{81} = \frac{81 - 64}{81} = \frac{17}{81} \] Thus, \[ \sin(\theta) = \sqrt{\frac{17}{81}} = \frac{\sqrt{17}}{9} \] ### Step 6: Relate \( \alpha \) and \( \theta \) Since \( \alpha + \theta = 90^\circ \), we have: \[ \cos(\alpha) = \sin(\theta) \] Thus, \[ \cos(\alpha) = \frac{\sqrt{17}}{9} \] ### Conclusion The cosine of the angle \( \alpha \) is given by: \[ \cos(\alpha) = \frac{\sqrt{17}}{9} \] Therefore, the correct answer is option **b**: \( \frac{\sqrt{17}}{9} \). ---

To solve the problem step by step, we will follow the mathematical approach outlined in the video transcript. ### Step 1: Identify the vectors We are given two vectors: - \( \vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k} \) - \( \vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k} \) ### Step 2: Calculate the dot product of the vectors ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Two adjacent sides of a parallelogram A B C D are given by vec A B=2 hat i+10 hat j+11 hat ka n d vec A D=- hat i+2 hat j+2 hat kdot The side A D is rotated by an acute angle alpha in the plane of the parallelogram so that A D becomes A D^(prime)dot If A D ' makes a right angle with the side A B , then the cosine of the angel alpha is given by 8/9 b. (sqrt(17))/9 c. 1/9 d. (4sqrt(5))/9

Find vec axx vec b ,\ if\ vec a=2 hat i+ hat k\ a n d\ vec b= hat i+ hat j+ hat kdot

Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b=4 hat i-4 hat j+7 hat k

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3 hat i+ hat j+4 hat k and vec b= hat i- hat j+ hat k .

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

The adjacent sides of a parallelogram are represented by the vectors vec a= hat i+ hat j- hat k\ a n d\ vec b=-2 hat i+ hat j+2 hat kdot Find unit vectors parallel to the diagonals of the parallelogram.

Find the angle between the vectors vec a= hat i- hat j+ hat k\ a n d\ vec b= hat i+ hat j- hat kdot

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat ka n d vec b=2 hat i-7 hat j+ hat kdot

Find the unit vector in the direction of vec a+ vec b ,\ if\ vec a=2 hat i- hat j+2 hat k\ a n d\ vec b=- hat i+ hat j- hat kdot

Find the area of the parallelogram determined by the vectors hat i+2 hat j+3 hat ka n d3 hat i-2 hat j+ hat kdot

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |