Home
Class 11
MATHS
Let veca=hati + hatj +hatk,vecb=hati- ha...

Let `veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk` be three vectors. A vectors `vecv` in the plane of `veca and vecb` , whose projection on `vecc is 1/sqrt3` is given by

A

`hati-3hatj + 3hatk`

B

`-3hati-3hatj +hatk `

C

`3hati -hatj + 3hatk`

D

`hati+ 3hatj -3hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \( \vec{v} \) in the plane of vectors \( \vec{a} \) and \( \vec{b} \) such that its projection onto vector \( \vec{c} \) is \( \frac{1}{\sqrt{3}} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] \[ \vec{c} = \hat{i} - \hat{j} - \hat{k} \] ### Step 2: Express \( \vec{v} \) in terms of \( \vec{a} \) and \( \vec{b} \) Since \( \vec{v} \) is in the plane of \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{v} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \): \[ \vec{v} = \mu \vec{a} + \lambda \vec{b} \] Substituting the values of \( \vec{a} \) and \( \vec{b} \): \[ \vec{v} = \mu (\hat{i} + \hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \] \[ \vec{v} = (\mu + \lambda) \hat{i} + (\mu - \lambda) \hat{j} + (\mu + \lambda) \hat{k} \] ### Step 3: Calculate the projection of \( \vec{v} \) onto \( \vec{c} \) The projection of \( \vec{v} \) onto \( \vec{c} \) is given by: \[ \text{Projection} = \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|} \] We need this projection to equal \( \frac{1}{\sqrt{3}} \). ### Step 4: Calculate \( |\vec{c}| \) First, we calculate the magnitude of \( \vec{c} \): \[ |\vec{c}| = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{3} \] ### Step 5: Set up the equation Now, we set up the equation: \[ \vec{v} \cdot \vec{c} = 1 \] Calculating \( \vec{v} \cdot \vec{c} \): \[ \vec{v} \cdot \vec{c} = [(\mu + \lambda) \hat{i} + (\mu - \lambda) \hat{j} + (\mu + \lambda) \hat{k}] \cdot [\hat{i} - \hat{j} - \hat{k}] \] \[ = (\mu + \lambda) \cdot 1 + (\mu - \lambda) \cdot (-1) + (\mu + \lambda) \cdot (-1) \] \[ = (\mu + \lambda) - (\mu - \lambda) - (\mu + \lambda) \] \[ = \mu + \lambda - \mu + \lambda - \mu - \lambda = -\mu + \lambda \] Thus, we have: \[ -\mu + \lambda = 1 \] ### Step 6: Solve for \( \mu \) and \( \lambda \) From the equation \( -\mu + \lambda = 1 \), we can express \( \lambda \): \[ \lambda = \mu + 1 \] ### Step 7: Substitute back into \( \vec{v} \) Substituting \( \lambda \) back into the expression for \( \vec{v} \): \[ \vec{v} = \mu \vec{a} + (\mu + 1) \vec{b} \] \[ = \mu (\hat{i} + \hat{j} + \hat{k}) + (\mu + 1)(\hat{i} - \hat{j} + \hat{k}) \] \[ = \mu \hat{i} + \mu \hat{j} + \mu \hat{k} + (\mu + 1) \hat{i} - (\mu + 1) \hat{j} + (\mu + 1) \hat{k} \] \[ = (2\mu + 1) \hat{i} + (-1) \hat{j} + (2\mu + 1) \hat{k} \] ### Step 8: Identify the correct option Now we can see that the coefficients of \( \hat{i} \) and \( \hat{k} \) are the same, and the coefficient of \( \hat{j} \) is different. We need to check the options provided. After checking the options, we find that: \[ \vec{v} = 3 \hat{i} - \hat{j} + 3 \hat{k} \] is the correct vector. ### Final Answer: \[ \vec{v} = 3 \hat{i} - \hat{j} + 3 \hat{k} \]

To solve the problem, we need to find a vector \( \vec{v} \) in the plane of vectors \( \vec{a} \) and \( \vec{b} \) such that its projection onto vector \( \vec{c} \) is \( \frac{1}{\sqrt{3}} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |