Home
Class 11
MATHS
Let bar(PR)=3hati+hatj-2hatk and bar(SQ...

Let `bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk` determine diagonals of a parallelogram PQRS and `bar(PT)=hati+2hatj+3hatk` be another vector. Then the volume of the parallelepiped determined by the vectors `bar(PT),bar(PQ) and bar(PS)` is

A

5

B

20

C

10

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the volume of the parallelepiped determined by the vectors \( \bar{PT} \), \( \bar{PQ} \), and \( \bar{PS} \). ### Step-by-Step Solution: 1. **Identify the Given Vectors**: - \( \bar{PR} = 3\hat{i} + \hat{j} - 2\hat{k} \) - \( \bar{SQ} = \hat{i} - 3\hat{j} - 4\hat{k} \) - \( \bar{PT} = \hat{i} + 2\hat{j} + 3\hat{k} \) 2. **Find Vectors \( \bar{PQ} \) and \( \bar{PS} \)**: - The vector \( \bar{PQ} \) can be found using the formula: \[ \bar{PQ} = \bar{PR} - \bar{SQ} \] - Calculate \( \bar{PQ} \): \[ \bar{PQ} = (3\hat{i} + \hat{j} - 2\hat{k}) - (\hat{i} - 3\hat{j} - 4\hat{k}) = (3 - 1)\hat{i} + (1 + 3)\hat{j} + (-2 + 4)\hat{k} = 2\hat{i} + 4\hat{j} + 2\hat{k} \] - The vector \( \bar{PS} \) can be found using the formula: \[ \bar{PS} = \bar{SQ} - \bar{PR} \] - Calculate \( \bar{PS} \): \[ \bar{PS} = (\hat{i} - 3\hat{j} - 4\hat{k}) - (3\hat{i} + \hat{j} - 2\hat{k}) = (1 - 3)\hat{i} + (-3 - 1)\hat{j} + (-4 + 2)\hat{k} = -2\hat{i} - 4\hat{j} - 2\hat{k} \] 3. **Calculate the Cross Product \( \bar{PQ} \times \bar{PS} \)**: - Set up the determinant: \[ \bar{PQ} \times \bar{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 2 \\ -2 & -4 & -2 \end{vmatrix} \] - Calculate the determinant: \[ = \hat{i} \begin{vmatrix} 4 & 2 \\ -4 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 2 \\ -2 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 4 \\ -2 & -4 \end{vmatrix} \] - This results in: \[ = \hat{i} (4 \cdot -2 - 2 \cdot -4) - \hat{j} (2 \cdot -2 - 2 \cdot -2) + \hat{k} (2 \cdot -4 - 4 \cdot -2) \] \[ = \hat{i} (-8 + 8) - \hat{j} (-4 + 4) + \hat{k} (-8 + 8) = \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = \vec{0} \] 4. **Find the Volume of the Parallelepiped**: - The volume \( V \) is given by: \[ V = |\bar{PT} \cdot (\bar{PQ} \times \bar{PS})| \] - Since \( \bar{PQ} \times \bar{PS} = \vec{0} \), the volume is: \[ V = |\bar{PT} \cdot \vec{0}| = 0 \] ### Conclusion: The volume of the parallelepiped determined by the vectors \( \bar{PT} \), \( \bar{PQ} \), and \( \bar{PS} \) is **0**.

To solve the problem, we need to find the volume of the parallelepiped determined by the vectors \( \bar{PT} \), \( \bar{PQ} \), and \( \bar{PS} \). ### Step-by-Step Solution: 1. **Identify the Given Vectors**: - \( \bar{PR} = 3\hat{i} + \hat{j} - 2\hat{k} \) - \( \bar{SQ} = \hat{i} - 3\hat{j} - 4\hat{k} \) - \( \bar{PT} = \hat{i} + 2\hat{j} + 3\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati - 3 hatj + 4 hatk, then the lengths of its sides are

The sides of a parallelogram are 2hati +4hatj -5hatk and hati + 2hatj +3hatk . The unit vector parallel to one of the diagonals is

The sides of a parallelogram are 2 hati + 4 hatj -5 hatk and hati + 2 hatj + 3 hatk , then the unit vector parallel to one of the diagonals is

Find the area oif the parallelogram determined A=2hati+hatj-3hatk and B=12hatj-2hatk

The acute angle that the vector 2hati-2hatj+hatk makes with the plane determined by the vectors 2hati+3hatj-hatk and hati-hatj+2hatk is

Area of a parallelogram, whose diagonals are 3hati+hatj-2hatk and hati-3hatj+4hatk will be:

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Find the area of the parallelogram having diagonals 2hati-hatj+hatk and 3hati+3hatj-hatk

The resultant vector of of bar(OA) = 2hati + 3hatj + 6hatk and bar(OB) = 2hati - 5hatj + 3hatk is

If the diagonals of a parallelogram are represented by the vectors 3hati + hatj -2hatk and hati + 3hatj -4hatk , then its area in square units , is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |