Home
Class 11
MATHS
Which of the following expressions are...

Which of the following expressions are meaningful? ` vec u.( vec vxx vec w)` b. `( vec u. vec v). vec w` c. `( vec u. vec v). vec w` d. ` vec uxx( vec v. vec w)`

A

`vecu.(vecvxx vecw)`

B

`(vecu.vecv).vecw`

C

`(vecu.vecv)vecw`

D

`vecu xx (vecv . Vecw)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given vector expressions are meaningful, we need to analyze each option based on the rules of vector operations, specifically the dot product and the cross product. ### Step-by-Step Solution: 1. **Option A: \( \vec{u} \cdot (\vec{v} \times \vec{w}) \)** - The expression involves the cross product \( \vec{v} \times \vec{w} \), which results in a vector (let's call it \( \vec{k} \)). - Then, we take the dot product of \( \vec{u} \) with \( \vec{k} \): \( \vec{u} \cdot \vec{k} \). - The dot product of two vectors results in a scalar. - Therefore, this expression is meaningful. 2. **Option B: \( (\vec{u} \cdot \vec{v}) \cdot \vec{w} \)** - The first part \( \vec{u} \cdot \vec{v} \) results in a scalar (let's call it \( s \)). - The second part involves taking the dot product of a scalar \( s \) with a vector \( \vec{w} \). - The dot product is defined only between two vectors, not between a scalar and a vector. - Therefore, this expression is not meaningful. 3. **Option C: \( (\vec{u} \cdot \vec{v}) \cdot \vec{w} \)** - This option is identical to Option B. - As previously analyzed, \( \vec{u} \cdot \vec{v} \) results in a scalar, and taking the dot product of a scalar with a vector is not defined. - Therefore, this expression is not meaningful. 4. **Option D: \( \vec{u} \times (\vec{v} \cdot \vec{w}) \)** - The expression involves the dot product \( \vec{v} \cdot \vec{w} \), which results in a scalar (let's call it \( t \)). - The next part involves taking the cross product of \( \vec{u} \) with a scalar \( t \). - The cross product is defined only between two vectors, so a scalar cannot be crossed with a vector. - Therefore, this expression is not meaningful. ### Summary of Meaningfulness: - **Option A**: Meaningful - **Option B**: Not Meaningful - **Option C**: Not Meaningful - **Option D**: Not Meaningful Thus, the only meaningful expression is **Option A**.

To determine which of the given vector expressions are meaningful, we need to analyze each option based on the rules of vector operations, specifically the dot product and the cross product. ### Step-by-Step Solution: 1. **Option A: \( \vec{u} \cdot (\vec{v} \times \vec{w}) \)** - The expression involves the cross product \( \vec{v} \times \vec{w} \), which results in a vector (let's call it \( \vec{k} \)). - Then, we take the dot product of \( \vec{u} \) with \( \vec{k} \): \( \vec{u} \cdot \vec{k} \). - The dot product of two vectors results in a scalar. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Which of the following expressions are meaningful? a. vec u.(vec vxx vec w) b. vec u. vec v. vec w c. ( vec u vec v). vec w d. vec uxx( vec v. vec w)

For three vectors vec u , vec va n d vec w which of the following expressions is not equal to any of the remaining three ? a. vec udot( vec vxx vec w) b. ( vec vxx vec w)dot vec u c. vec vdot( vec uxx vec w) d. ( vec uxx vec v)dot vec w

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c dot vec a) vec c)/(1+ vec c dot vec c) b. vec x=( vec cxx vec b+ vec b+( vec c dot vec a) vec c)/(1+ vec c dot vec c) c. vec y=( vec axx vec c+ vec b+( vec c dot vec b) vec c)/(1+ vec c dot vec c) d. none of these

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec a in the plane of vectors vec b\ a n d\ vec c then which of the following is correct? [ vec a\ vec b\ vec c]=0 b. "\" [ vec a\ vec b\ vec c]=1' c. "[ vec a\ vec b\ vec c]=3" d. "[ vec b\ vec c\ vec a]=1"

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Let vec u and vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec v . Find the value of [ vec u \ vec v \ vec w] .

Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec vdot Find the value of [ vec u vec v vec w]dot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w