Home
Class 11
MATHS
Let vec a be vector parallel to line of...

Let `vec a ` be vector parallel to line of intersection of planes `P_1 and P_2` through origin. If `P_1`is parallel to the vectors `2 bar j + 3 bar k and 4 bar j - 3 bar k` and `P_2` is parallel to `bar j - bar k` and ` 3 bar I + 3 bar j `, then the angle between `vec a` and `2 bar i +bar j - 2 bar k` is :

A

`pi//2`

B

`pi//4`

C

`pi//6`

D

`3pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the normal vector of plane P1 Plane P1 is parallel to the vectors \( \vec{v_1} = 2\hat{j} + 3\hat{k} \) and \( \vec{v_2} = 4\hat{j} - 3\hat{k} \). The normal vector \( \vec{n_1} \) of plane P1 can be found using the cross product of \( \vec{v_1} \) and \( \vec{v_2} \). \[ \vec{n_1} = \vec{v_1} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & 4 \\ 0 & 3 & -3 \end{vmatrix} \] Calculating the determinant: \[ \vec{n_1} = \hat{i}(2 \cdot (-3) - 4 \cdot 3) - \hat{j}(0 \cdot (-3) - 0 \cdot 4) + \hat{k}(0 \cdot 3 - 0 \cdot 2) \] \[ = \hat{i}(-6 - 12) = -18\hat{i} \] So, \( \vec{n_1} = -18\hat{i} \). ### Step 2: Find the normal vector of plane P2 Plane P2 is parallel to the vectors \( \vec{w_1} = \hat{j} - \hat{k} \) and \( \vec{w_2} = 3\hat{i} + 3\hat{j} \). The normal vector \( \vec{n_2} \) of plane P2 can be found using the cross product of \( \vec{w_1} \) and \( \vec{w_2} \). \[ \vec{n_2} = \vec{w_1} \times \vec{w_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -1 \\ 3 & 3 & 0 \end{vmatrix} \] Calculating the determinant: \[ \vec{n_2} = \hat{i}(1 \cdot 0 - (-1) \cdot 3) - \hat{j}(0 \cdot 0 - (-1) \cdot 3) + \hat{k}(0 \cdot 3 - 1 \cdot 3) \] \[ = \hat{i}(0 + 3) - \hat{j}(0 + 3) - 3\hat{k} \] \[ = 3\hat{i} - 3\hat{j} - 3\hat{k} \] So, \( \vec{n_2} = 3\hat{i} - 3\hat{j} - 3\hat{k} \). ### Step 3: Find the direction vector of the line of intersection The direction vector \( \vec{a} \) of the line of intersection of the two planes is given by the cross product of their normal vectors \( \vec{n_1} \) and \( \vec{n_2} \). \[ \vec{a} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -18 & 0 & 0 \\ 3 & -3 & -3 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} = \hat{i}(0 \cdot (-3) - 0 \cdot (-3)) - \hat{j}(-18 \cdot (-3) - 0 \cdot 3) + \hat{k}(-18 \cdot (-3) - 0 \cdot 0) \] \[ = 0\hat{i} - \hat{j}(54) + \hat{k}(54) \] \[ = 0\hat{i} - 54\hat{j} + 54\hat{k} \] So, \( \vec{a} = 54(\hat{k} - \hat{j}) \). ### Step 4: Find the angle between vector \( \vec{a} \) and vector \( \vec{b} = 2\hat{i} + \hat{j} - 2\hat{k} \) To find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \), we use the dot product formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] Calculating \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = 54(\hat{k} - \hat{j}) \cdot (2\hat{i} + \hat{j} - 2\hat{k}) = 54(0 + (-54) + (-108)) = 54(0 + 1 + 2) = 54 \cdot 1 = 54 \] Calculating \( |\vec{a}| \): \[ |\vec{a}| = |54(\hat{k} - \hat{j})| = 54\sqrt{1^2 + (-1)^2} = 54\sqrt{2} \] Calculating \( |\vec{b}| \): \[ |\vec{b}| = |2\hat{i} + \hat{j} - 2\hat{k}| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] Now substituting back into the cosine formula: \[ \cos \theta = \frac{54}{54\sqrt{2} \cdot 3} = \frac{1}{\sqrt{2}} \] Thus, \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^\circ \] ### Final Answer The angle between \( \vec{a} \) and \( 2\hat{i} + \hat{j} - 2\hat{k} \) is \( 45^\circ \). ---

To solve the problem, we will follow these steps: ### Step 1: Find the normal vector of plane P1 Plane P1 is parallel to the vectors \( \vec{v_1} = 2\hat{j} + 3\hat{k} \) and \( \vec{v_2} = 4\hat{j} - 3\hat{k} \). The normal vector \( \vec{n_1} \) of plane P1 can be found using the cross product of \( \vec{v_1} \) and \( \vec{v_2} \). \[ \vec{n_1} = \vec{v_1} \times \vec{v_2} = \begin{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let A be vector parallel to line of intersection of planes P_1 and P_2 . Plane P_1 is parallel to the vectors 2hat(j)+3hat(k) and 4hat(j)-3hat(k) and that P_2 is parallel to hat(j)-hat(k) and 3hat(i)+3hat(j) , then the angle between vector A and a given vector 2hat(i)+hat(j)-2hat(k) is

Let vec A be a vector parallel to the line of intersection of planes P_1a n dP_2dot Plane P_1 is parallel to vectors 2 hat j+3 hat ka n d4 hat j-3ka n dP_2 is parallel to hat j- hat ka n d3 hat i+3 hat jdot Then the angle betweenvector vec A and a given vector 2 hat i+ hat j-2 hat k is a. pi//2 b. pi//4 c. pi//6 d. 3pi//4

If bar X_1 and bar X_2 are the means of two series such that bar X_1 lt bar X_2 and bar X is the mean of the combined series, then

If (|veca+vecb|)/(|veca-vecb|)=1 , then angle between bar(a)" and "bar(b) is :-

A vector parallel to the line of intersection of the planes vec r=dot(3 hat i- hat j+ hat k)=1\ a n d\ vec rdot(( hat i+4 hat j-2 hat k)=2 is a. -2 hat i+7 hat j+13 hat k b. 2 hat i+7 hat j-13 hat k c. -2i-7j+13 k d. 2i+7j+13 k

Find a vector of magnitude 5 units and parallel to the resultant of the vectors vec a=2hat i +3hat j -hat k and vec b=hat i-2hat j+ hat k

Find the vector and cartesian equations of the line passing through the point P\ (1,\ 2,\ 3)\ and parallel to the planes vec rdot( hat i-\ hat j+2 hat k)=5\ and vec rdot(3 hat i+ hat j+ hat k)=6.

Find the value of ' p ' for which the vectors 3 hat i+2 hat j+9 hat k\ a n d\ hat i-2p hat j+3 hat k are parallel.

Write the value of p for which vec a=3 hat i+2 hat j+9 hat k\ a n d\ vec b= hat i+p hat j+3 hat k are parallel vectors.

In the circle above with diameter d, chords bar(PQ) and bar(TU) are parallel to diameter bar(RS) . If bar(PQ) and bar(TU) are each (3)/(4) of the length of bar(RS) , what is the distance between chords bar(PQ) and bar(TU) in terms of d?