Home
Class 12
MATHS
If un=sin^("n")theta+cos^ntheta, then pr...

If `u_n=sin^("n")theta+cos^ntheta,` then prove that `(u_5-u_7)/(u_3-u_5)=(u_3)/(u_1)` .

Text Solution

AI Generated Solution

To prove that \[ \frac{u_5 - u_7}{u_3 - u_5} = \frac{u_3}{u_1} \] where \( u_n = \sin^n \theta + \cos^n \theta \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If a ,b,c, and u,v,w are complex numbers representing the vertices of two triangle such that they are similar, then prove that (a-c)/(a-b) =(u-w)/(u-v)

If u_n= sin (ntheta) sec^ntheta , v_n= cos(ntheta)sec^ntheta , n in N , n!=1 , then (v_n-v_(n-1))/v_(n-1)+1/n(u_n/v_n) =

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , then prove that : sin u = tan^(2) theta .

If y^(2)=ax^(2)+2bx+c and u_(n)= int (x^(n))/(y)dx , prove that (n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y and deduce that au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0) .

If u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p rov et h a t(d u)/(d v)=sqrt((1-u^2)/(1-v^2))

If u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p rov et h a t(d u)/(d v)=sqrt((1-u^2)/(1-v^2))

If U_(n) = sin n theta*sec^(n)theta, V_(n) = cosntheta*sec^(n)theta for n= 0,1,2,… then V_(n) -V_(n-1)+U_(n-1)tantheta =

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .