Home
Class 12
MATHS
If a^2+b^2+2a bcostheta=1,c^2+a^2+2c dco...

If `a^2+b^2+2a bcostheta=1,c^2+a^2+2c dcostheta=1` and `a c+b d+(a d+b c)costheta=0,` then prove that `a^2+c^2=cos e c^2theta`

Text Solution

Verified by Experts

`a^2+b^2+2abcostheta=1`
`rArr(b+acos theta)^2=1-a^2sin^2theta`
`c^2+d^2+2cdcostheta=1`
`rArr(d+c costheta)^2=1-c^2sin^2theta`
`ac+bd+(ad+bc)costheta=0`
`rArr (b+acostheta)(d+c costheta)=-ac sin^2theta`
`rArr(b+acostheta)^2(d+c costheta)^2=(-ac sin^2theta)^2`
`rArr (1-a^2sin^2theta)(1-c^2sin^2theta)=a^2c^2sin^4theta`
`rArr (a^2+c^2)sin^2theta=1`
`rArr (a^2+c^2)=cosec^2theta`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If a^2+b^2+2a bcostheta=1,c^2+d^2+2c dcostheta=1 and a c+b d+(a d+b c)costheta=0, then prove that a^2+c^2=cos e c^2theta

If a sintheta + bcos theta = C, then prove that a costheta -b sintheta = sqrt(a^2+b^2-c^2)

If a^2+b^2+c^2=1 then show that value of the determinant |a^2+(b^2+c^2)costhetab a(1-costheta)c a(1-costheta)a b(1-costheta)b^2+(c^2+a^2)costhetac b(1-costheta)a c(1-costheta)b c(1-costheta)c^2+(a^2+b^2)costheta| simplifies to cos^2theta

The value of sqrt((1+costheta)/(1-costheta)) is (a) cottheta-cos e c\ theta (b) cos e c\ theta+cottheta (c) cos e c^2theta+cot^2theta (d) (cottheta+cos e c\ theta)^2

If sides a , b , c of the triangle A B C are in AdotPdot , then prove that sin^2A/2cos e c\ 2A ;sin^2B/2cos e c\ 2B\ ;sin^2C/2cos e c\ 2C are in H.P.

If acottheta+b"c o s e c"theta=p and bcottheta+a"c o s e c"theta=q , then p^2-q^2= (a) a^2-b^2 (b) b^2-a^2 (c) a^2+b^2 (d) b-a

If A D is the median of A B C , using vectors, prove that A B^2+A C^2=2(A D^2+C D^2)dot

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : cos theta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))

c(1+cos2theta)= (A) c 2sin^2theta (B) c2cos^2theta (C) c2tan^2theta (D) none of these

In A B C , A D is a median. Prove that A B^2+A C^2=2\ A D^2+2\ D C^2 .