Home
Class 12
MATHS
Let A=sinx+cosxdot Then find the value o...

Let `A=sinx+cosxdot` Then find the value of `sin^4x+cos^4x` in terms of `Adot`

Text Solution

Verified by Experts

`A=sinx+cosx`
`:. A^2=1+2sinxcosx`
Now, `sin^4+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x`
`=1-2sin^2cos^2x`
`=1-2((A^2-1)/2)^2`
`=1-((A^2-1)^2)/2`
`=(2-(A^4-2A^2+1))/2`
`=(1+2A^2-A^4)/2`
`=1/2+A^2-1/2A^4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sinx=A , find cos2x in terms of A.

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

Find the maximum value of 4sin^2x+3cos^2x+sinx/2+cosx/2dot

Find the domain of f(x)=sin^(-1)x+cosxdot

Find the domain of f(x)=sin^(-1)x+cosxdot

Evaluate: int1/(sin^4x+cos^4x)dx

Evaluate: int1/(sin^4x+cos^4x)\ dx