Home
Class 12
MATHS
For each natural number nlt=2, prove tha...

For each natural number `nlt=2,` prove that `sinx_1cosx_2+sinx_2c0sx+3++sinx_ncosx_1lt=n/2` (where `x_1, x_2, ,x_n` are arbitrary real numbers).

Text Solution

Verified by Experts

Let the required sum be `S_(n)`. We know that
`(sinx_1-cosx_2)^2=(sinx_2-cosx_3)^2+...+(sinx_(n-1)-cosx_n)^2+(sinx_n-cosx_1)^2ge0`
or `(sin^2x_1-cos^2x_2)+(sin^2x_2-cos^2x_3)(sin^2x_3+cos^2x_3)+...+(sin^2x_(n)-cos^2x_n)ge2S_n`
`rArr nge2S_n`
or `S_nlen//2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Solve : 4sinx.cosx+2sinx+2cosx+1=0

Prove that, (sin (x/2)-cos (x/2))^(2)=1-sinx

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi] .

Sqrrtcos2x ​ + (1+sin2x) ​ =2 (sinx+cosx) ​ , if-

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

The number of real solutions of the equation (sinx-x)(cosx-x^2)=0 is

If x_(1),x_(2),...,x_(n) are real numbers, then the largest value of the expression sinx_(1)cosx_(2)+sinx_(2)cosx_(3)+...+sinx_(n)cosx_(1), is

If 0< x_1 < x_2 < x_3 < pi , then prove that sin((x_1+x_2+x_3)/3)<(sinx_1+sinx_2+sinx_3)/3 . Hence or otherwise prove that if A, B, C are angles of a triangle, then the maximum value of sinA+sinB+sinC is (3sqrt(3))/2

If 0lt=xlt=2pi, then the number of solutions of 3(sinx+cosx)-2(sin^3x+cos^3x)=8 is