Home
Class 12
MATHS
Let (-3, -4) be a point on the terminal ...

Let (-3, -4) be a point on the terminal side of `theta`. Find the sine, cosine and tangent of `theta`.

Text Solution

Verified by Experts

The correct Answer is:
`sintheta=-4/5,costheta=-3/5,tantheta=4/3`

Here `x=-3,y=-4`
Terminal angle `theta`lies in the third quadrant.
Now, `r=sqrt(x^2+y^2)=sqrt((-3)^2+(-4)^2)=sqrt25=5`
`:. sintheta =y/r=-4/5`
`costheta =x/r=-3/5`
`tantheta =y/x=4/3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.3|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Suppose the point with coordinates (-12 ,5) is on the terminal side of angle theta . Find the values of the six trigonometric functions of thetadot

If sin theta = 3//5, find the values of cosine theta

Knowledge Check

  • If P(-3, 4) is a point on the terminal side of angle theta , what is the value of costheta ?

    A
    `-(3)/(4)`
    B
    `-(3)/(5)`
    C
    `(3)/(4)`
    D
    `(4)/(5)`
  • Similar Questions

    Explore conceptually related problems

    Find the angle theta whose cosine is equal to its tangent.

    Find the general value of theta in sec theta - cosec theta = (4)/(3)

    If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

    Given : 4 sintheta = 3 cos theta , find the value of: sin theta

    Given : 4 sintheta = 3 cos theta , find the value of: cos theta

    Find the distance between the points : (cos theta, sin theta), (sin theta, cos theta)

    Find the general value of theta from the equation tan4theta=cot3theta .