Home
Class 12
MATHS
Let us consider the equation cos^4x/a+si...

Let us consider the equation `cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0`
the value of `sin^8x/b^3+cos^8x/a^3` is

A

`1/((a+b)^2)`

B

`1/((a+b)^3)`

C

`1/((a+b)^4)`

D

`1/(a^3+b^3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b} \] for \(x \in [0, \frac{\pi}{2}]\) and given \(a, b > 0\), we need to find the value of \[ \frac{\sin^8 x}{b^3} + \frac{\cos^8 x}{a^3}. \] ### Step 1: Rewrite the given equation We start with the equation: \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b}. \] Multiply both sides by \(a + b\): \[ (a + b) \left( \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} \right) = 1. \] This simplifies to: \[ \frac{(a + b) \cos^4 x}{a} + \frac{(a + b) \sin^4 x}{b} = 1. \] ### Step 2: Simplify the equation This can be expressed as: \[ \frac{b \cos^4 x + a \sin^4 x}{ab} = 1. \] Thus, we have: \[ b \cos^4 x + a \sin^4 x = ab. \] ### Step 3: Express \(\sin^2 x\) and \(\cos^2 x\) Let \(s = \sin^2 x\) and \(c = \cos^2 x\). Then \(s + c = 1\). We can rewrite the equation as: \[ b c^2 + a s^2 = ab. \] Substituting \(s = 1 - c\): \[ b c^2 + a (1 - c)^2 = ab. \] Expanding this gives: \[ b c^2 + a (1 - 2c + c^2) = ab. \] Combining like terms results in: \[ (b + a) c^2 - 2ac + a = ab. \] ### Step 4: Rearranging the equation Rearranging gives us a quadratic in \(c\): \[ (b + a) c^2 - 2ac + (a - ab) = 0. \] ### Step 5: Solve for \(s\) and \(c\) Using the quadratic formula \(c = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}\): \[ c = \frac{2a \pm \sqrt{(2a)^2 - 4(b + a)(a - ab)}}{2(b + a)}. \] ### Step 6: Find \(\sin^8 x\) and \(\cos^8 x\) Now, we need to find: \[ \frac{\sin^8 x}{b^3} + \frac{\cos^8 x}{a^3} = \frac{s^4}{b^3} + \frac{c^4}{a^3}. \] Using \(s = \frac{b}{a+b}\) and \(c = \frac{a}{a+b}\): \[ s^4 = \left(\frac{b}{a+b}\right)^4 \quad \text{and} \quad c^4 = \left(\frac{a}{a+b}\right)^4. \] Thus, \[ \frac{s^4}{b^3} + \frac{c^4}{a^3} = \frac{b^4}{(a+b)^4 b^3} + \frac{a^4}{(a+b)^4 a^3} = \frac{b}{(a+b)^4} + \frac{a}{(a+b)^4} = \frac{a+b}{(a+b)^4} = \frac{1}{(a+b)^3}. \] ### Final Answer Thus, the value of \[ \frac{\sin^8 x}{b^3} + \frac{\cos^8 x}{a^3} = \frac{1}{(a+b)^3}. \]

To solve the equation \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b} \] for \(x \in [0, \frac{\pi}{2}]\) and given \(a, b > 0\), we need to find the value of ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 The value of sin^2x in terms of a and b is

Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a r e _________

Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a r e _________

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

Solve the equation sin^3x.cos3x+cos^3x.sin3x+3/8=0

The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to

Evaluate: int(sin^4x)/(cos^8x)\ dx

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.