Home
Class 12
MATHS
In DeltaABC,BC=1,sin.(A)/2=x1,sin.(B)/2=...

In `DeltaABC,BC=1,sin.(A)/2=x_1,sin.(B)/2=x_2,cos.(A)/2=x_3andcos.(B)/2=x_4" with "(x_1/x_2)^2007-(x_3/x_4)^2006=0`
If `angleA=90^@`, then area of `DeltaABC` is

A

`1/2`

B

1

C

2

D

can't be determined

Text Solution

Verified by Experts

The correct Answer is:
B

In given `DeltaABC" both " A/2and B/2"lie strictly in "(0,pi/2)and sin x " always increasing in "(0,pi/2)` whereas cos x is always decreasing in `(0,pi/2)`.
So, if `A/2ltB/2`
`rArr sin(A)/2gt sin(B)/2`
`or x_1gtx_2`
`and x_3ltx_4`
`or 1/x^3gt1/x^4`
So, `x_1^2007x_4^2006=x_2^2007x_3^2006` is not valid.
Similarly for `A/2ltB/2`
`rArr sin(A)/2sin(B)/2`
`rArr x_1ltx_2`
`and 1/x^3lt1/x^4`
For this also `x_1^2007x_4^2006=x_2^2007x_3^2006` is not valid.
So,`(x_1/x_2)^2007-(x_3/x_4)^2006=0" is possible only when " A/2=B/2`.
`rArr x_1=x_2and 1/x_3=1/x_4`
Hence, `DeltaABC` is isosceles with `angleABC=angleCAB`.
`rArr BC=AC=1"unit"`
if `angleA=90^@`
Area, `A=1/2BCxxAC=1/2" sq. units"`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The plane x / 2 + y / 3 + z / 4 = 1 cuts the co-ordinate axes in A, B, C : then the area of the DeltaABC is

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

Prove that: \ sin3x+sin2x-sin x=4sin xcos(x/2)cos((3x)/2)

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

In a DeltaABC, 2 cos A=(sin B)/(sin C) and 2 ^(tan^(2)B) is a solution of equation x^(2)-9x +8=0, then DeltaABC is

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)