Home
Class 12
MATHS
In DeltaABC,BC=1,sin.(A)/2=x1,sin.(B)/2=...

In `DeltaABC,BC=1,sin.(A)/2=x_1,sin.(B)/2=x_2,cos.(A)/2=x_3andcos.(B)/2=x_4" with "(x_1/x_2)^2007-(x_3/x_4)^2006=0`
If `angleA=90^@`, then area of `DeltaABC` is

A

1/2 sq. units

B

1/3 sq. units

C

1 sq. units

D

2sq. Units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC given the conditions, we can follow these steps: ### Step 1: Understand the Triangle Configuration Given that angle A = 90°, triangle ABC is a right-angled triangle with BC = 1. We need to determine the lengths of sides AB and AC. ### Step 2: Analyze the Given Conditions We have: - \( \frac{\sin(A/2)}{2} = x_1 \) - \( \frac{\sin(B/2)}{2} = x_2 \) - \( \frac{\cos(A/2)}{2} = x_3 \) - \( \frac{\cos(B/2)}{2} = x_4 \) Since angle A = 90°, we can find: - \( A/2 = 45° \) so \( \sin(45°) = \frac{\sqrt{2}}{2} \) and \( \cos(45°) = \frac{\sqrt{2}}{2} \) Thus, - \( x_1 = \frac{\sqrt{2}/2}{2} = \frac{\sqrt{2}}{4} \) - \( x_3 = \frac{\sqrt{2}/2}{2} = \frac{\sqrt{2}}{4} \) ### Step 3: Determine Angle B Since triangle ABC is a right triangle and angle A = 90°, the sum of angles B and C must be 90°. Therefore, if we let angle B = x, then angle C = 90° - x. ### Step 4: Use the Given Condition The condition given is: \[ \left(\frac{x_1}{x_2}\right)^{2007} - \left(\frac{x_3}{x_4}\right)^{2006} = 0 \] This implies: \[ \frac{x_1}{x_2} = \frac{x_3}{x_4} \] Since we have \( x_1 = x_3 \), we can conclude that \( x_2 = x_4 \). ### Step 5: Equate Angles From the equality \( x_2 = x_4 \), we can conclude: \[ \sin(B/2) = \cos(B/2) \] This implies that \( B/2 = 45° \) or \( B = 90° \), which means angle B = 45° and angle C = 45°. ### Step 6: Determine the Lengths of Sides In a 45°-45°-90° triangle, the lengths of the legs are equal. Let the lengths of AB and AC be x. By the Pythagorean theorem: \[ AB^2 + AC^2 = BC^2 \] Substituting the known values: \[ x^2 + x^2 = 1^2 \] \[ 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Step 7: Calculate the Area The area \( A \) of triangle ABC is given by: \[ A = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times x \times x = \frac{1}{2} \times \left(\frac{\sqrt{2}}{2}\right) \times \left(\frac{\sqrt{2}}{2}\right) \] \[ A = \frac{1}{2} \times \frac{2}{4} = \frac{1}{4} \] ### Final Answer The area of triangle ABC is \( \frac{1}{4} \).

To find the area of triangle ABC given the conditions, we can follow these steps: ### Step 1: Understand the Triangle Configuration Given that angle A = 90°, triangle ABC is a right-angled triangle with BC = 1. We need to determine the lengths of sides AB and AC. ### Step 2: Analyze the Given Conditions We have: - \( \frac{\sin(A/2)}{2} = x_1 \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The plane x / 2 + y / 3 + z / 4 = 1 cuts the co-ordinate axes in A, B, C : then the area of the DeltaABC is

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

Prove that: \ sin3x+sin2x-sin x=4sin xcos(x/2)cos((3x)/2)

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

In a DeltaABC, 2 cos A=(sin B)/(sin C) and 2 ^(tan^(2)B) is a solution of equation x^(2)-9x +8=0, then DeltaABC is

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)