Home
Class 12
MATHS
Let f(x) = sin^6x + cos^6x + k(sin^4 x ...

Let `f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x)` for some real number k. Determine(a) all real numbers k for which `f(x)` is constant for all values of x.

A

`-1//2`

B

`1//2`

C

`1//4`

D

`-3//2`

Text Solution

Verified by Experts

The correct Answer is:
D

f(x)`=sin^(6)x+cos^(6)x+k (sin^4x+cos(4)x)`
f(x)` =sin^6x+cos^6x+k(sin^4x+cos^4 x)`
`=(sin ^2x)^3+cos^2 x)^3+k (sin^2 x)+(cos^2 )^2]`
`=(sin ^2x)^3+(cos ^2 x)^3-3 sin^2x.cos^2x(sin^2 x+ cos^2)`
`+ k[ sin^x +cos^2 x)^2-2sin^2 x. cos^2x]`
`=(1-3 sin^2 x cos^2x)+ k[1-2 sin^2 x cos^2 x]`
f(x) is constant if k = -3/2.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If A = sin^2x + cos^4 x , then for all real x :

Show That 2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0

If f(x)=2 for all real numbers x, then f(x+2)=

Show that 2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0 .

If f(x)=sin^6x+cos^6x , then range of f(x) is

Let h(x) =f(x)-a(f(x))^(3) for every real number x h(x) increase as f(x) increses for all real values of x if

The equation sin x(sinx+cos x) = k has real solutions, where k is a real number. Then

For every real number find all the real solutions to equation sin x + cos(a+x)+ cos (a-x)=2

Let f(x) = sin(x/3) + cos((3x)/10) for all real x. Find the least natural number n such that f(npi + x) = f(x) for all real x.

Let f(x) be a function such that f '(x)= log _(1//3) (log _(3) (sin x+ a)). The complete set of values of 'a' for which f (x) is strictly decreasing for all real values of x is: