Home
Class 12
MATHS
If 0ltxltpi/4andcosx+sinx=5/4, then the ...

If `0ltxltpi/4andcosx+sinx=5/4`, then the value of `16(cosx-sinx)^2` is ___________ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 16(\cos x - \sin x)^2 \) given that \( \cos x + \sin x = \frac{5}{4} \) and \( 0 < x < \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Let \( y = \cos x - \sin x \)**: We will express \( y \) in terms of \( \cos x \) and \( \sin x \). 2. **Square \( y \)**: \[ y^2 = (\cos x - \sin x)^2 = \cos^2 x - 2\cos x \sin x + \sin^2 x \] Using the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \): \[ y^2 = 1 - 2\cos x \sin x \tag{1} \] 3. **Square the given equation \( \cos x + \sin x = \frac{5}{4} \)**: \[ (\cos x + \sin x)^2 = \left(\frac{5}{4}\right)^2 \] Expanding the left side: \[ \cos^2 x + 2\cos x \sin x + \sin^2 x = \frac{25}{16} \] Again using \( \cos^2 x + \sin^2 x = 1 \): \[ 1 + 2\cos x \sin x = \frac{25}{16} \] 4. **Solve for \( 2\cos x \sin x \)**: \[ 2\cos x \sin x = \frac{25}{16} - 1 = \frac{25}{16} - \frac{16}{16} = \frac{9}{16} \tag{2} \] 5. **Substitute equation (2) into equation (1)**: \[ y^2 = 1 - 2\cos x \sin x = 1 - \frac{9}{16} \] Converting 1 to a fraction: \[ 1 = \frac{16}{16} \] Thus: \[ y^2 = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] 6. **Find \( 16(\cos x - \sin x)^2 \)**: Since \( y^2 = \frac{7}{16} \): \[ 16y^2 = 16 \cdot \frac{7}{16} = 7 \] ### Final Answer: The value of \( 16(\cos x - \sin x)^2 \) is \( \boxed{7} \).

To solve the problem, we need to find the value of \( 16(\cos x - \sin x)^2 \) given that \( \cos x + \sin x = \frac{5}{4} \) and \( 0 < x < \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Let \( y = \cos x - \sin x \)**: We will express \( y \) in terms of \( \cos x \) and \( \sin x \). 2. **Square \( y \)**: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is

If 2cosx+sinx=1, then find the value of 7cosx+6sinx

If 2cosx+sinx=1 , then the sum of the values of 7cosx+6sinx is

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

Evaluate: int1/(cosx(5-4sinx)\ dx

Find the value of tan^-1((sinx+cosx)/(cosx-sinx))

If sin^4 x + cos^4 x = 7/2 sinx.cosx, then the value of x equals to

If 0ltxltpi and cosx + sinx =1/2 , then tanx is (1) (4-sqrt(7))/3 (2) -(4+sqrt(7))/3 ( 3) (1+sqrt(7))/4 (4) (1-sqrt(7))/4

The minimum value of 2^sinx+2^cosx