Home
Class 12
MATHS
The value of 3(sin^4t+cos^4t-1)/(sin^6t+...

The value of `3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1)` is equal to __________

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \frac{3(\sin^4 t + \cos^4 t - 1)}{\sin^6 t + \cos^6 t - 1}, \] we will follow these steps: ### Step 1: Simplify \(\sin^4 t + \cos^4 t\) Using the identity \(\sin^2 t + \cos^2 t = 1\), we can square both sides: \[ (\sin^2 t + \cos^2 t)^2 = 1^2. \] Expanding this gives: \[ \sin^4 t + \cos^4 t + 2\sin^2 t \cos^2 t = 1. \] Rearranging this, we find: \[ \sin^4 t + \cos^4 t = 1 - 2\sin^2 t \cos^2 t. \] ### Step 2: Substitute into the expression Now substitute \(\sin^4 t + \cos^4 t\) back into the original expression: \[ \sin^4 t + \cos^4 t - 1 = (1 - 2\sin^2 t \cos^2 t) - 1 = -2\sin^2 t \cos^2 t. \] ### Step 3: Simplify \(\sin^6 t + \cos^6 t\) Using the identity for the sum of cubes, we have: \[ \sin^6 t + \cos^6 t = (\sin^2 t + \cos^2 t)(\sin^4 t - \sin^2 t \cos^2 t + \cos^4 t). \] Since \(\sin^2 t + \cos^2 t = 1\), we can simplify this to: \[ \sin^6 t + \cos^6 t = \sin^4 t + \cos^4 t - \sin^2 t \cos^2 t. \] Substituting \(\sin^4 t + \cos^4 t\) from Step 1: \[ \sin^6 t + \cos^6 t = (1 - 2\sin^2 t \cos^2 t) - \sin^2 t \cos^2 t = 1 - 3\sin^2 t \cos^2 t. \] ### Step 4: Substitute into the denominator Now substitute \(\sin^6 t + \cos^6 t\) back into the denominator: \[ \sin^6 t + \cos^6 t - 1 = (1 - 3\sin^2 t \cos^2 t) - 1 = -3\sin^2 t \cos^2 t. \] ### Step 5: Substitute everything back into the expression Now we can substitute everything back into the original expression: \[ \frac{3(-2\sin^2 t \cos^2 t)}{-3\sin^2 t \cos^2 t}. \] ### Step 6: Simplify the expression The \(-3\sin^2 t \cos^2 t\) cancels out: \[ \frac{3 \cdot -2}{-3} = 2. \] Thus, the value of the expression is \[ \boxed{2}. \]

To find the value of the expression \[ \frac{3(\sin^4 t + \cos^4 t - 1)}{\sin^6 t + \cos^6 t - 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) is equal to

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

The graph of {:{(x=sin^(2)t),(y=2 cos t):}

Evaluate intsqrt (2+sin3t) cos3t dt

The value of : int_(pi//6)^(5pi//6)sqrt(4-4sin^(2)t) dt , is

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

x = "sin" t, y = "cos" 2t

' find dy/dx if x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t