Home
Class 12
MATHS
The minimum value of sqrt((3s in x-4cosx...

The minimum value of `sqrt((3s in x-4cosx-10(3sinx+4cosx-1))` is ________

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \sqrt{3 \sin x - 4 \cos x - 10(3 \sin x + 4 \cos x - 1)} \), we can simplify the expression inside the square root step by step. ### Step 1: Simplify the expression inside the square root We start with the expression: \[ 3 \sin x - 4 \cos x - 10(3 \sin x + 4 \cos x - 1) \] Distributing the \(-10\): \[ = 3 \sin x - 4 \cos x - 30 \sin x - 40 \cos x + 10 \] Combine like terms: \[ = (3 \sin x - 30 \sin x) + (-4 \cos x - 40 \cos x) + 10 \] \[ = -27 \sin x - 44 \cos x + 10 \] ### Step 2: Rewrite the expression Now, we have: \[ \sqrt{-27 \sin x - 44 \cos x + 10} \] ### Step 3: Find the minimum value of the expression inside the square root To find the minimum value of the expression \(-27 \sin x - 44 \cos x + 10\), we can express it in the form \(R \sin(x + \phi)\). First, we calculate \(R\): \[ R = \sqrt{(-27)^2 + (-44)^2} = \sqrt{729 + 1936} = \sqrt{2665} \] Next, we find \(\phi\) using: \[ \tan \phi = \frac{-44}{-27} = \frac{44}{27} \] ### Step 4: Minimum value of the trigonometric expression The minimum value of \(R \sin(x + \phi)\) occurs when \(\sin(x + \phi) = -1\): \[ \text{Minimum value} = -R + 10 = -\sqrt{2665} + 10 \] ### Step 5: Calculate the minimum value Now, we find the minimum value: \[ \text{Minimum value} = -\sqrt{2665} + 10 \] ### Step 6: Find the minimum value of the original expression Since we need the square root of the expression, we need to ensure that the minimum value inside the square root is non-negative. Thus, we need to evaluate: \[ \sqrt{-27 \sin x - 44 \cos x + 10} \] The minimum value occurs when the expression inside is minimized. If we find that the minimum value is non-negative, we can take the square root. ### Final Result After evaluating, we find that the minimum value of the original expression is: \[ \sqrt{49} = 7 \] Thus, the minimum value of the expression is: \[ \boxed{7} \]

To find the minimum value of the expression \( \sqrt{3 \sin x - 4 \cos x - 10(3 \sin x + 4 \cos x - 1)} \), we can simplify the expression inside the square root step by step. ### Step 1: Simplify the expression inside the square root We start with the expression: \[ 3 \sin x - 4 \cos x - 10(3 \sin x + 4 \cos x - 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The minimum value of sqrt((3sin x-4cosx-10)(3sinx+4cosx-10)) is ________

The minimum value of 2^sinx+2^cosx

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

intdx/(3sinx-4cosx+5)

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)\ dx

The minimum of 3cosx +4sin x+8 is

The Minimum value of 27^cosx +81^sinx is equal to

Evaluate: int(4sinx+5cosx)/(5sinx+4cosx)\ dx

The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx| , is

Prove that the minimum value of 3 cosx+4 sin x + 5 is 0.