Home
Class 12
MATHS
If pcos e ctheta+qcottheta=2 and p^2cos ...

If `pcos e ctheta+qcottheta=2` and `p^2cos e c^2theta-q^2cot^2theta=5` then the value of `sqrt(81 p^(-2)- q^(-2))` is________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations involving \( p \), \( q \), and \( \theta \): 1. \( p \csc \theta + q \cot \theta = 2 \) (Equation 1) 2. \( p^2 \csc^2 \theta - q^2 \cot^2 \theta = 5 \) (Equation 2) We need to find the value of \( \sqrt{81 p^{-2} - q^{-2}} \). ### Step 1: Express \( \csc \theta \) and \( \cot \theta \) From Equation 1, we can express \( p \csc \theta \) and \( q \cot \theta \): \[ p \csc \theta = 2 - q \cot \theta \] ### Step 2: Substitute into Equation 2 Now, we can substitute \( p \csc \theta \) into Equation 2. We know: \[ p^2 \csc^2 \theta = (p \csc \theta)^2 = (2 - q \cot \theta)^2 \] Substituting this into Equation 2 gives: \[ (2 - q \cot \theta)^2 - q^2 \cot^2 \theta = 5 \] ### Step 3: Expand the equation Expanding the left-hand side: \[ (2 - q \cot \theta)^2 = 4 - 4q \cot \theta + q^2 \cot^2 \theta \] So, we have: \[ 4 - 4q \cot \theta + q^2 \cot^2 \theta - q^2 \cot^2 \theta = 5 \] This simplifies to: \[ 4 - 4q \cot \theta = 5 \] ### Step 4: Solve for \( \cot \theta \) Rearranging gives: \[ -4q \cot \theta = 5 - 4 \] \[ -4q \cot \theta = 1 \] \[ \cot \theta = -\frac{1}{4q} \] ### Step 5: Substitute back to find \( \csc \theta \) Now substituting \( \cot \theta \) back into Equation 1: \[ p \csc \theta + q \left(-\frac{1}{4q}\right) = 2 \] This simplifies to: \[ p \csc \theta - \frac{1}{4} = 2 \] \[ p \csc \theta = 2 + \frac{1}{4} = \frac{9}{4} \] ### Step 6: Find \( \csc^2 \theta \) Now we can find \( \csc^2 \theta \): \[ \csc \theta = \frac{9}{4p} \] \[ \csc^2 \theta = \left(\frac{9}{4p}\right)^2 = \frac{81}{16p^2} \] ### Step 7: Substitute \( \csc^2 \theta \) into Equation 2 Now substituting \( \csc^2 \theta \) into Equation 2: \[ p^2 \left(\frac{81}{16p^2}\right) - q^2 \left(-\frac{1}{4q}\right)^2 = 5 \] \[ \frac{81}{16} - \frac{1}{16} = 5 \] \[ \frac{80}{16} = 5 \] ### Step 8: Find \( \sqrt{81 p^{-2} - q^{-2}} \) Now we need to find \( \sqrt{81 p^{-2} - q^{-2}} \): From the previous steps, we know: \[ 81 p^{-2} = \frac{81}{p^2} \] \[ q^{-2} = \frac{1}{q^2} \] Thus: \[ \sqrt{81 p^{-2} - q^{-2}} = \sqrt{16} = 4 \] ### Final Answer The value is: \[ \boxed{4} \]

To solve the problem, we are given two equations involving \( p \), \( q \), and \( \theta \): 1. \( p \csc \theta + q \cot \theta = 2 \) (Equation 1) 2. \( p^2 \csc^2 \theta - q^2 \cot^2 \theta = 5 \) (Equation 2) We need to find the value of \( \sqrt{81 p^{-2} - q^{-2}} \). ### Step 1: Express \( \csc \theta \) and \( \cot \theta \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Prove: cos e c^2theta+sec^2theta=cos e c^2thetasec^2theta

Prove: cos e c^6theta=cot^6theta+3cot^2thetacos e c^2theta+1

If 2tan^(-1)(costheta)=tan^(-1)(2cos e ctheta),(theta!=0) , then find the value of theta

What is the value of 9cot^2theta-9cos e c^2theta ?

Write the value of cos e c^2(90o-theta)-tan^2theta .

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

If cosec theta + cot theta = p prove that cos theta = p2-1 / p2 + 1

If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 theta

What is the value of (1-cos^2theta)cos e c^2theta ?

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .