If `alpha, beta` ar the roots of the quadratic equation `x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, ` then the value of `alpha ^(2) + alpha beta +beta^2` is equal to :
CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
THREE DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise All Questions|294 Videos
Similar Questions
Explore conceptually related problems
If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta is equal to :
{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}
Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3
If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .
If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to
If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____
If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is
If alpha, beta are the roots of x^(2)+3x+1=0 , then the equation whose roots 2-alpha, 2-beta is
If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=
If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:
CENGAGE ENGLISH-THEORY OF EQUATIONS-JEE ADVANCED (Numerical Value Type )