If `f(x)=(x^(2)+3x+2)(x^(2)-7x+a)` and `g(x)=(x^(2)-x-12)(x^(2)+5x+b)`, then the value of `a` and `b`, if `(x+1)(x-4)` is H.C.F. of `f(x)` and `g(x)` is
(a) a=10 : b=6` (b) `a=4 : b=12` (c)`a=12 : b=4` (d)`a=6 : b=10`
A
`a=10 : b=6`
B
`a=4 : b=12`
C
`a=12 : b=4`
D
`a=6 : b=10`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) such that the given polynomials \( f(x) \) and \( g(x) \) have \( (x + 1)(x - 4) \) as their highest common factor (H.C.F.).
### Step 1: Factor \( f(x) \)
Given:
\[
f(x) = (x^2 + 3x + 2)(x^2 - 7x + a)
\]
First, we factor \( x^2 + 3x + 2 \):
\[
x^2 + 3x + 2 = (x + 1)(x + 2)
\]
Thus, we can rewrite \( f(x) \):
\[
f(x) = (x + 1)(x + 2)(x^2 - 7x + a)
\]
### Step 2: Determine conditions for \( f(x) \)
Since \( (x + 1)(x - 4) \) is a factor of \( f(x) \), we need \( x^2 - 7x + a \) to be zero when \( x = 4 \):
\[
4^2 - 7(4) + a = 0
\]
Calculating:
\[
16 - 28 + a = 0 \implies a - 12 = 0 \implies a = 12
\]
### Step 3: Factor \( g(x) \)
Given:
\[
g(x) = (x^2 - x - 12)(x^2 + 5x + b)
\]
First, we factor \( x^2 - x - 12 \):
\[
x^2 - x - 12 = (x - 4)(x + 3)
\]
Thus, we can rewrite \( g(x) \):
\[
g(x) = (x - 4)(x + 3)(x^2 + 5x + b)
\]
### Step 4: Determine conditions for \( g(x) \)
Since \( (x + 1)(x - 4) \) is a factor of \( g(x) \), we need \( x^2 + 5x + b \) to be zero when \( x = -1 \):
\[
(-1)^2 + 5(-1) + b = 0
\]
Calculating:
\[
1 - 5 + b = 0 \implies b - 4 = 0 \implies b = 4
\]
### Final Values
Thus, we have:
\[
a = 12 \quad \text{and} \quad b = 4
\]
### Conclusion
The correct option is \( (c) \, a = 12 : b = 4 \).
---
To solve the problem, we need to find the values of \( a \) and \( b \) such that the given polynomials \( f(x) \) and \( g(x) \) have \( (x + 1)(x - 4) \) as their highest common factor (H.C.F.).
### Step 1: Factor \( f(x) \)
Given:
\[
f(x) = (x^2 + 3x + 2)(x^2 - 7x + a)
\]
First, we factor \( x^2 + 3x + 2 \):
...
CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
THREE DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise All Questions|294 Videos
Similar Questions
Explore conceptually related problems
If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) at x=0 is 0 (b) 6 (c) 12 (d) 24
If for the function f(x)=1/4x^2+b x+10 ;f(12-x)=f(x)AAx in R , then the value of ' b ' is-
If 5:4 :: 30 : x , then the value of x is (a) 24 (b) 12 (c) 3/2 (d) 6
If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.
If f(x)=x^2+2b x+2c^2 and g(x)= -x^2-2c x+b^2 are such that min f(x)> m a x g(x) , then the relation between b and c is
If f: RvecR ,g(x)=f(x)+3x-1, then the least value of function y=g(|x|) is a. -9/4 b. -5/4 c. -2 d. -1
The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a and x = b (a < b), then the value of a+b is equal to
If f(x)={(|x|-3 when x = 1) & g(x)={2-|x| when x = 2 . if h(x)=f(x)+g(x) is discontinuous at exactly one point, then - (a). a=-3, b=0 (b). a=-3, b=-1 (c) a=2, b=1 (d) a=0, b=1
If f''(x)=-f(x) and g(x)=f^(prime)(x) and F(x)=(f(x/2))^2+(g(x/2))^2 and given that F(5)=5, then F(10) is (a)5 (b) 10 (c) 0 (d) 15
If a-b ,\ a and a+b are zeros of the polynomial f(x)=2x^3-6x^2+5x-7 , write the value of a .
CENGAGE ENGLISH-THEORY OF EQUATIONS-JEE ADVANCED (Numerical Value Type )