Home
Class 12
MATHS
If 0 lt alpha lt beta lt gamma lt pi//2...

If `0 lt alpha lt beta lt gamma lt pi//2`, then the equation
`(x-sinbeta)(x-singamma)+(x-sinalpha)(x-singamma)+(x-sinalpha)(x-sinbeta)=0` has

A

real and unequal roots

B

non-real roots

C

real and equal roots

D

real and unequal roots greater than `2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (x - \sin \beta)(x - \sin \gamma) + (x - \sin \alpha)(x - \sin \gamma) + (x - \sin \alpha)(x - \sin \beta) = 0, \] we will first expand and simplify the left-hand side. ### Step 1: Expand Each Term We will expand each of the three products in the equation. 1. **First term:** \[ (x - \sin \beta)(x - \sin \gamma) = x^2 - x \sin \beta - x \sin \gamma + \sin \beta \sin \gamma \] 2. **Second term:** \[ (x - \sin \alpha)(x - \sin \gamma) = x^2 - x \sin \alpha - x \sin \gamma + \sin \alpha \sin \gamma \] 3. **Third term:** \[ (x - \sin \alpha)(x - \sin \beta) = x^2 - x \sin \alpha - x \sin \beta + \sin \alpha \sin \beta \] ### Step 2: Combine All Terms Now, we will combine all the expanded terms: \[ (x^2 - x \sin \beta - x \sin \gamma + \sin \beta \sin \gamma) + (x^2 - x \sin \alpha - x \sin \gamma + \sin \alpha \sin \gamma) + (x^2 - x \sin \alpha - x \sin \beta + \sin \alpha \sin \beta) = 0 \] Combining like terms, we get: - **Total \(x^2\) terms:** \(3x^2\) - **Total \(x\) terms:** \(-x(\sin \alpha + \sin \beta + \sin \gamma) - x(\sin \alpha + \sin \beta + \sin \gamma) = -2x(\sin \alpha + \sin \beta + \sin \gamma)\) - **Constant terms:** \(\sin \beta \sin \gamma + \sin \alpha \sin \gamma + \sin \alpha \sin \beta\) Thus, the equation simplifies to: \[ 3x^2 - 2x(\sin \alpha + \sin \beta + \sin \gamma) + (\sin \beta \sin \gamma + \sin \alpha \sin \gamma + \sin \alpha \sin \beta) = 0 \] ### Step 3: Identify Coefficients This is a quadratic equation in the form \(ax^2 + bx + c = 0\), where: - \(a = 3\) - \(b = -2(\sin \alpha + \sin \beta + \sin \gamma)\) - \(c = \sin \beta \sin \gamma + \sin \alpha \sin \gamma + \sin \alpha \sin \beta\) ### Step 4: Calculate the Discriminant To determine the nature of the roots, we calculate the discriminant \(D\): \[ D = b^2 - 4ac \] Substituting the values of \(a\), \(b\), and \(c\): \[ D = [-2(\sin \alpha + \sin \beta + \sin \gamma)]^2 - 4 \cdot 3 \cdot (\sin \beta \sin \gamma + \sin \alpha \sin \gamma + \sin \alpha \sin \beta) \] Calculating \(b^2\): \[ D = 4(\sin \alpha + \sin \beta + \sin \gamma)^2 - 12(\sin \beta \sin \gamma + \sin \alpha \sin \gamma + \sin \alpha \sin \beta) \] ### Step 5: Analyze the Discriminant Since \(\alpha, \beta, \gamma\) are all in the interval \((0, \frac{\pi}{2})\), the sine values are positive. Therefore, both \(b^2\) and \(c\) are positive. ### Conclusion Since \(D > 0\), the roots of the quadratic equation are real and distinct. ### Final Answer The equation has **real and distinct roots**. ---

To solve the equation \[ (x - \sin \beta)(x - \sin \gamma) + (x - \sin \alpha)(x - \sin \gamma) + (x - \sin \alpha)(x - \sin \beta) = 0, \] we will first expand and simplify the left-hand side. ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt beta lt (pi)/(2) then

If 0 lt x lt pi /2 then

If 0 lt x lt pi/2 then

If 0ltalphaltbetaltgammaltpi/2 then the equation 1/(x-sinalpha)+1/(x-sinbeta)+1/(x-singamma)=0 has (A) imaginary roots (B) real and equal roots (C) real and unequal roots (D) rational roots

if 0ltalphaltbetaltgammaltpi/ 2, then prove that tanalpha lt (sinalpha+sinbeta+singamma)/ (cosalpha+cosbeta+cosgamma)lt tangamma

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(sinbeta)=0 and (sinalpha+sinbeta) (sinalpha)/(sinbeta)=-1 and lambda=lim_(n->oo) (1+(2sinalpha)^(2n))/((2sinbeta)^(2n)) then :

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

If sin(alpha+beta)sin(alpha-beta)=singamma(2sinbeta+singamma), where 0 < alpha,beta,gamma < pi, then the straight line whose equation is xsinalpha+ysinbeta-singamma=0 passes through point (a) (1,1) (b) (-1,1) (c) (1,-1) (d) none of these