For real solution of equation `3sqrt(x+3p+1)-3sqrt(x)=1`, we have
A
`p ge 1//4`
B
`p ge -1//4`
C
`p ge 1//3`
D
`p ge -1//3`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \) for real solutions, we will follow these steps:
### Step 1: Isolate the square root
We start by isolating one of the square root terms:
\[
3\sqrt{x + 3p + 1} = 3\sqrt{x} + 1
\]
### Step 2: Divide by 3
Next, we divide both sides of the equation by 3:
\[
\sqrt{x + 3p + 1} = \sqrt{x} + \frac{1}{3}
\]
### Step 3: Square both sides
Now we will square both sides to eliminate the square roots:
\[
x + 3p + 1 = \left(\sqrt{x} + \frac{1}{3}\right)^2
\]
### Step 4: Expand the right side
Expanding the right side gives:
\[
x + 3p + 1 = x + \frac{2}{3}\sqrt{x} + \frac{1}{9}
\]
### Step 5: Rearranging the equation
Now, we rearrange the equation to isolate the square root:
\[
3p + 1 - \frac{1}{9} = \frac{2}{3}\sqrt{x}
\]
### Step 6: Simplify the left side
We simplify the left side:
\[
3p + \frac{8}{9} = \frac{2}{3}\sqrt{x}
\]
### Step 7: Isolate \(\sqrt{x}\)
Now, we isolate \(\sqrt{x}\):
\[
\sqrt{x} = \frac{3}{2}(3p + \frac{8}{9})
\]
### Step 8: Square both sides again
Square both sides again to eliminate the square root:
\[
x = \left(\frac{3}{2}(3p + \frac{8}{9})\right)^2
\]
### Step 9: Set up the quadratic equation
We can express this in the form of a quadratic equation. Let \( h = \sqrt{x} \):
\[
h^2 + h - p = 0
\]
### Step 10: Determine the discriminant
For the quadratic equation \( h^2 + h - p = 0 \) to have real solutions, the discriminant must be non-negative:
\[
D = b^2 - 4ac = 1^2 - 4(1)(-p) = 1 + 4p \geq 0
\]
### Step 11: Solve for \( p \)
This leads to the condition:
\[
1 + 4p \geq 0 \implies p \geq -\frac{1}{4}
\]
### Conclusion
Thus, for the real solution of the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \), we have:
\[
p \geq -\frac{1}{4}
\]
This corresponds to option 2.
---
To solve the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \) for real solutions, we will follow these steps:
### Step 1: Isolate the square root
We start by isolating one of the square root terms:
\[
3\sqrt{x + 3p + 1} = 3\sqrt{x} + 1
\]
...