Home
Class 12
MATHS
For real solution of equation 3sqrt(x+3p...

For real solution of equation `3sqrt(x+3p+1)-3sqrt(x)=1`, we have

A

`p ge 1//4`

B

`p ge -1//4`

C

`p ge 1//3`

D

`p ge -1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \) for real solutions, we will follow these steps: ### Step 1: Isolate the square root We start by isolating one of the square root terms: \[ 3\sqrt{x + 3p + 1} = 3\sqrt{x} + 1 \] ### Step 2: Divide by 3 Next, we divide both sides of the equation by 3: \[ \sqrt{x + 3p + 1} = \sqrt{x} + \frac{1}{3} \] ### Step 3: Square both sides Now we will square both sides to eliminate the square roots: \[ x + 3p + 1 = \left(\sqrt{x} + \frac{1}{3}\right)^2 \] ### Step 4: Expand the right side Expanding the right side gives: \[ x + 3p + 1 = x + \frac{2}{3}\sqrt{x} + \frac{1}{9} \] ### Step 5: Rearranging the equation Now, we rearrange the equation to isolate the square root: \[ 3p + 1 - \frac{1}{9} = \frac{2}{3}\sqrt{x} \] ### Step 6: Simplify the left side We simplify the left side: \[ 3p + \frac{8}{9} = \frac{2}{3}\sqrt{x} \] ### Step 7: Isolate \(\sqrt{x}\) Now, we isolate \(\sqrt{x}\): \[ \sqrt{x} = \frac{3}{2}(3p + \frac{8}{9}) \] ### Step 8: Square both sides again Square both sides again to eliminate the square root: \[ x = \left(\frac{3}{2}(3p + \frac{8}{9})\right)^2 \] ### Step 9: Set up the quadratic equation We can express this in the form of a quadratic equation. Let \( h = \sqrt{x} \): \[ h^2 + h - p = 0 \] ### Step 10: Determine the discriminant For the quadratic equation \( h^2 + h - p = 0 \) to have real solutions, the discriminant must be non-negative: \[ D = b^2 - 4ac = 1^2 - 4(1)(-p) = 1 + 4p \geq 0 \] ### Step 11: Solve for \( p \) This leads to the condition: \[ 1 + 4p \geq 0 \implies p \geq -\frac{1}{4} \] ### Conclusion Thus, for the real solution of the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \), we have: \[ p \geq -\frac{1}{4} \] This corresponds to option 2. ---

To solve the equation \( 3\sqrt{x + 3p + 1} - 3\sqrt{x} = 1 \) for real solutions, we will follow these steps: ### Step 1: Isolate the square root We start by isolating one of the square root terms: \[ 3\sqrt{x + 3p + 1} = 3\sqrt{x} + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

The number of real solutions the equation sqrt(x+14-8sqrt(x-2))+sqrt(x+23-10sqrt(x-2))=3 are

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

The product of the roots of the equation 3sqrt(8+x)+3sqrt(8-x)=1 , is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________