If `alpha` and `beta` be the roots of equation `x^(2) + 3x + 1 = 0` then the value of `((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2)` is equal to
If `alpha` and `beta` be the roots of equation `x^(2) + 3x + 1 = 0` then the value of `((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2)` is equal to
A
`18`
B
`19`
C
`20`
D
`21`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\), where \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2} + 3x + 1 = 0\).
### Step 1: Find the roots \(\alpha\) and \(\beta\)
We can use the quadratic formula to find the roots of the equation \(x^{2} + 3x + 1 = 0\):
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here, \(a = 1\), \(b = 3\), and \(c = 1\).
Calculating the discriminant:
\[
b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5
\]
Now substituting back into the quadratic formula:
\[
x = \frac{-3 \pm \sqrt{5}}{2}
\]
Thus, the roots are:
\[
\alpha = \frac{-3 + \sqrt{5}}{2}, \quad \beta = \frac{-3 - \sqrt{5}}{2}
\]
### Step 2: Calculate \(1 + \beta\) and \(1 + \alpha\)
Now we calculate \(1 + \beta\) and \(1 + \alpha\):
\[
1 + \beta = 1 + \frac{-3 - \sqrt{5}}{2} = \frac{2 - 3 - \sqrt{5}}{2} = \frac{-1 - \sqrt{5}}{2}
\]
\[
1 + \alpha = 1 + \frac{-3 + \sqrt{5}}{2} = \frac{2 - 3 + \sqrt{5}}{2} = \frac{-1 + \sqrt{5}}{2}
\]
### Step 3: Substitute into the expression
Now we substitute these values into the expression:
\[
\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}
\]
Substituting \(\alpha\) and \(1 + \beta\):
\[
\left(\frac{\frac{-3 + \sqrt{5}}{2}}{\frac{-1 - \sqrt{5}}{2}}\right)^{2} + \left(\frac{\frac{-3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}}\right)^{2}
\]
This simplifies to:
\[
\left(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\right)^{2} + \left(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\right)^{2}
\]
### Step 4: Simplify each term
Let’s simplify each fraction:
1. For \(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\):
\[
= \frac{(-3 + \sqrt{5})(-1 + \sqrt{5})}{(-1 - \sqrt{5})(-1 + \sqrt{5})} = \frac{(3 - 3\sqrt{5} + \sqrt{5} - 5)}{1 - 5} = \frac{-2 - 2\sqrt{5}}{-4} = \frac{1 + \sqrt{5}}{2}
\]
2. For \(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\):
\[
= \frac{(-3 - \sqrt{5})(-1 - \sqrt{5})}{(-1 + \sqrt{5})(-1 - \sqrt{5})} = \frac{(3 + 3\sqrt{5} + \sqrt{5} + 5)}{1 - 5} = \frac{8 + 4\sqrt{5}}{-4} = -2 - \sqrt{5}
\]
### Step 5: Calculate the squares
Now we calculate the squares:
\[
\left(\frac{1 + \sqrt{5}}{2}\right)^{2} + \left(-2 - \sqrt{5}\right)^{2}
\]
Calculating each:
\[
\left(\frac{1 + \sqrt{5}}{2}\right)^{2} = \frac{(1 + 2\sqrt{5} + 5)}{4} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2}
\]
\[
\left(-2 - \sqrt{5}\right)^{2} = 4 + 4\sqrt{5} + 5 = 9 + 4\sqrt{5}
\]
### Step 6: Combine the results
Now we combine:
\[
\frac{3 + \sqrt{5}}{2} + 9 + 4\sqrt{5}
\]
To combine, convert \(\frac{3 + \sqrt{5}}{2}\) to a common denominator:
\[
= \frac{3 + \sqrt{5} + 18 + 8\sqrt{5}}{2} = \frac{21 + 9\sqrt{5}}{2}
\]
### Final Result
The value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\) is \(18\).
To solve the problem, we need to find the value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\), where \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2} + 3x + 1 = 0\).
### Step 1: Find the roots \(\alpha\) and \(\beta\)
We can use the quadratic formula to find the roots of the equation \(x^{2} + 3x + 1 = 0\):
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here, \(a = 1\), \(b = 3\), and \(c = 1\).
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is
If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .
If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is
If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is
If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:
If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is
If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is
If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2
If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)
If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .