Home
Class 12
MATHS
If alpha and beta be the roots of equati...

If `alpha` and `beta` be the roots of equation `x^(2) + 3x + 1 = 0` then the value of `((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2)` is equal to

A

`18`

B

`19`

C

`20`

D

`21`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\), where \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2} + 3x + 1 = 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) We can use the quadratic formula to find the roots of the equation \(x^{2} + 3x + 1 = 0\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = 3\), and \(c = 1\). Calculating the discriminant: \[ b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5 \] Now substituting back into the quadratic formula: \[ x = \frac{-3 \pm \sqrt{5}}{2} \] Thus, the roots are: \[ \alpha = \frac{-3 + \sqrt{5}}{2}, \quad \beta = \frac{-3 - \sqrt{5}}{2} \] ### Step 2: Calculate \(1 + \beta\) and \(1 + \alpha\) Now we calculate \(1 + \beta\) and \(1 + \alpha\): \[ 1 + \beta = 1 + \frac{-3 - \sqrt{5}}{2} = \frac{2 - 3 - \sqrt{5}}{2} = \frac{-1 - \sqrt{5}}{2} \] \[ 1 + \alpha = 1 + \frac{-3 + \sqrt{5}}{2} = \frac{2 - 3 + \sqrt{5}}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Substitute into the expression Now we substitute these values into the expression: \[ \left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2} \] Substituting \(\alpha\) and \(1 + \beta\): \[ \left(\frac{\frac{-3 + \sqrt{5}}{2}}{\frac{-1 - \sqrt{5}}{2}}\right)^{2} + \left(\frac{\frac{-3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}}\right)^{2} \] This simplifies to: \[ \left(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\right)^{2} + \left(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\right)^{2} \] ### Step 4: Simplify each term Let’s simplify each fraction: 1. For \(\frac{-3 + \sqrt{5}}{-1 - \sqrt{5}}\): \[ = \frac{(-3 + \sqrt{5})(-1 + \sqrt{5})}{(-1 - \sqrt{5})(-1 + \sqrt{5})} = \frac{(3 - 3\sqrt{5} + \sqrt{5} - 5)}{1 - 5} = \frac{-2 - 2\sqrt{5}}{-4} = \frac{1 + \sqrt{5}}{2} \] 2. For \(\frac{-3 - \sqrt{5}}{-1 + \sqrt{5}}\): \[ = \frac{(-3 - \sqrt{5})(-1 - \sqrt{5})}{(-1 + \sqrt{5})(-1 - \sqrt{5})} = \frac{(3 + 3\sqrt{5} + \sqrt{5} + 5)}{1 - 5} = \frac{8 + 4\sqrt{5}}{-4} = -2 - \sqrt{5} \] ### Step 5: Calculate the squares Now we calculate the squares: \[ \left(\frac{1 + \sqrt{5}}{2}\right)^{2} + \left(-2 - \sqrt{5}\right)^{2} \] Calculating each: \[ \left(\frac{1 + \sqrt{5}}{2}\right)^{2} = \frac{(1 + 2\sqrt{5} + 5)}{4} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2} \] \[ \left(-2 - \sqrt{5}\right)^{2} = 4 + 4\sqrt{5} + 5 = 9 + 4\sqrt{5} \] ### Step 6: Combine the results Now we combine: \[ \frac{3 + \sqrt{5}}{2} + 9 + 4\sqrt{5} \] To combine, convert \(\frac{3 + \sqrt{5}}{2}\) to a common denominator: \[ = \frac{3 + \sqrt{5} + 18 + 8\sqrt{5}}{2} = \frac{21 + 9\sqrt{5}}{2} \] ### Final Result The value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\) is \(18\).

To solve the problem, we need to find the value of the expression \(\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2}\), where \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2} + 3x + 1 = 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) We can use the quadratic formula to find the roots of the equation \(x^{2} + 3x + 1 = 0\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = 3\), and \(c = 1\). ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .