Home
Class 12
MATHS
Let alpha, beta be two real numbers sati...

Let `alpha`, `beta` be two real numbers satisfying the following relations `alpha^(2)+beta^(2)=5`, `3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3))`
Possible value of `alpha beta` is

A

`+-2`

B

`+-3`

C

`+-1`

D

`+-sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
B

`alpha^(2)+beta^(2)=5`
`3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3))`
`(alpha^(5)+beta^(5))/(alpha^(3)+beta^(3))=(11)/(3)`
` :. ((alpha^(3)+beta^(3))(alpha^(2)+beta^(2))-(alpha^(2)beta^(2)(alpha+beta)))/(alpha^(3)+beta^(3))=(11)/(3)`
`:. alpha^(2)+beta^(2)-(alpha^(2)beta^(2)(alpha+beta))/((alpha+beta)(alpha^(2)+beta^(2)-alphabeta))=(11)/(3)`
` :. 5-(alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)` ltbrlt `:. (25-5alphabeta-alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)`
Let `alphabeta=t`
`(25-5t-t^(2))/(5-t)=(11)/(3)`
`75-15t-3t^(2)=55-11 t`
`75-15t-3t^(2)-55+11t=0`
`-3t^(2)-4t+20=0`
`(t-2)(3t+10)=0`
` :. t=2` or `(-10)/(3)`
So `alpha beta=2`, `alphabeta=(-10)/(3)`
If `alphabeta=2`,
`alpha^(2)+beta^(2)=(alpha+beta)^(2)-2alphabeta`
`:.5=(alpha+beta)^(2)-2xx2`
`(alpha+beta)^(2)=9`
`alpha+beta=+-3`
for `alphabeta=(-10)/(3)`, `(alpha+beta)^(2) lt 0`
`implies x^(2) +- 3x+2=0`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|122 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta be two real numbers satisfying the following relations alpha^2+beta^2=5, 3(alpha^5+beta^5)=11(alpha^3+beta^3)1. Possible value of alpha beta is

Let alpha , beta be two real numbers satisfying the following relations alpha^(2)+beta^(2)=5 , 3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3)) Quadratic equation having roots alpha and beta is

Factorise alpha^2 +beta^2 + alpha beta

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

alpha + beta = 5 , alpha beta= 6 .find alpha - beta

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is