If `a^(3)-3a^(2)+5a-17=0` and `b^(3)-3b^(2)+5b+11=0` are such that `a+b` is a real number, then the value of `a+b` is
A
`-1`
B
`1`
C
`2`
D
`-2`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equations \( a^3 - 3a^2 + 5a - 17 = 0 \) and \( b^3 - 3b^2 + 5b + 11 = 0 \) under the condition that \( a + b \) is a real number, we can follow these steps:
### Step 1: Define \( a + b \)
Let \( a + b = \lambda \). Then we can express \( b \) in terms of \( a \):
\[
b = \lambda - a
\]
### Step 2: Substitute \( b \) into the second equation
Now, substitute \( b = \lambda - a \) into the second equation:
\[
(\lambda - a)^3 - 3(\lambda - a)^2 + 5(\lambda - a) + 11 = 0
\]
### Step 3: Expand the equation
Expanding \( (\lambda - a)^3 \):
\[
(\lambda - a)^3 = \lambda^3 - 3\lambda^2 a + 3\lambda a^2 - a^3
\]
Expanding \( -3(\lambda - a)^2 \):
\[
-3(\lambda - a)^2 = -3(\lambda^2 - 2\lambda a + a^2) = -3\lambda^2 + 6\lambda a - 3a^2
\]
Expanding \( 5(\lambda - a) \):
\[
5(\lambda - a) = 5\lambda - 5a
\]
### Step 4: Combine all terms
Now, combine all the terms:
\[
\lambda^3 - 3\lambda^2 + 5\lambda + 11 - a^3 + 3\lambda^2 a - 3a^2 + 6\lambda a - 5a = 0
\]
This simplifies to:
\[
\lambda^3 - a^3 + (3\lambda^2 - 3)a^2 + (6\lambda - 5)a + (\lambda^3 + 5\lambda + 11) = 0
\]
### Step 5: Rearranging the equation
Rearranging gives:
\[
-a^3 + (3\lambda^2 - 3)a^2 + (6\lambda - 5)a + (\lambda^3 + 5\lambda + 11) = 0
\]
### Step 6: Compare coefficients
Now, we compare this equation with the first equation \( a^3 - 3a^2 + 5a - 17 = 0 \). This gives us:
1. Coefficient of \( a^3 \): \( -1 \) matches \( -1 \)
2. Coefficient of \( a^2 \): \( 3\lambda^2 - 3 = -3 \) implies \( 3\lambda^2 = 0 \) so \( \lambda^2 = 0 \) which gives \( \lambda = 0 \)
3. Coefficient of \( a \): \( 6\lambda - 5 = 5 \) implies \( 6\lambda = 10 \) which is consistent with \( \lambda = 2 \)
4. Constant term: \( \lambda^3 + 5\lambda + 11 = -17 \) implies \( 2^3 + 5(2) + 11 = 8 + 10 + 11 = 29 \) which does not satisfy.
### Step 7: Solve for \( \lambda \)
From the coefficients, we find that \( \lambda = 2 \) satisfies the equations.
### Final Answer
Thus, the value of \( a + b \) is:
\[
\boxed{2}
\]
To solve the equations \( a^3 - 3a^2 + 5a - 17 = 0 \) and \( b^3 - 3b^2 + 5b + 11 = 0 \) under the condition that \( a + b \) is a real number, we can follow these steps:
### Step 1: Define \( a + b \)
Let \( a + b = \lambda \). Then we can express \( b \) in terms of \( a \):
\[
b = \lambda - a
\]
...