Home
Class 12
MATHS
In the expansion of ((x)/(costheta)+(1)/...

In the expansion of `((x)/(costheta)+(1)/(xsintheta))^(16)`, if `l_(1)` is the least value of the term independent of `x` when `(pi)/(8) le theta le (pi)/(4)` and `l_(2)` is the least value of the term independent of `x` when `(pi)/(16) le theta le (pi)/(8)`, then the value of `(l_(2))/(l_(1))` is

A

`8`

B

`32`

C

`16`

D

`64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least values of the term independent of \( x \) in the expansion of \[ \left( \frac{x}{\cos \theta} + \frac{1}{x \sin \theta} \right)^{16} \] for two different ranges of \( \theta \). ### Step 1: Identify the General Term The general term \( T_{r+1} \) in the expansion can be expressed as: \[ T_{r+1} = \binom{16}{r} \left( \frac{x}{\cos \theta} \right)^{16-r} \left( \frac{1}{x \sin \theta} \right)^{r} \] This simplifies to: \[ T_{r+1} = \binom{16}{r} \frac{x^{16-r}}{\cos^{16-r} \theta} \cdot \frac{1}{x^r \sin^r \theta} = \binom{16}{r} \frac{x^{16-2r}}{\cos^{16-r} \theta \sin^r \theta} \] ### Step 2: Determine the Condition for Independence from \( x \) The term \( T_{r+1} \) will be independent of \( x \) when the exponent of \( x \) is zero: \[ 16 - 2r = 0 \implies r = 8 \] ### Step 3: Find the Independent Term Substituting \( r = 8 \) into the general term gives: \[ T_{9} = \binom{16}{8} \frac{1}{\cos^8 \theta \sin^8 \theta} \] ### Step 4: Simplify the Independent Term We can rewrite this as: \[ T_{9} = \binom{16}{8} \frac{1}{\sin^8(2\theta)} \cdot 2^8 \] ### Step 5: Calculate \( L_1 \) for \( \frac{\pi}{8} \leq \theta \leq \frac{\pi}{4} \) To find \( L_1 \), we need to minimize \( \sin^8(2\theta) \) over the interval \( \frac{\pi}{8} \leq \theta \leq \frac{\pi}{4} \): - At \( \theta = \frac{\pi}{4} \), \( 2\theta = \frac{\pi}{2} \) and \( \sin(2\theta) = 1 \). - At \( \theta = \frac{\pi}{8} \), \( 2\theta = \frac{\pi}{4} \) and \( \sin(2\theta) = \frac{\sqrt{2}}{2} \). Thus, the minimum occurs at \( \theta = \frac{\pi}{4} \): \[ L_1 = \binom{16}{8} \cdot 2^8 \] ### Step 6: Calculate \( L_2 \) for \( \frac{\pi}{16} \leq \theta \leq \frac{\pi}{8} \) Now, we find \( L_2 \) for the interval \( \frac{\pi}{16} \leq \theta \leq \frac{\pi}{8} \): - At \( \theta = \frac{\pi}{8} \), \( 2\theta = \frac{\pi}{4} \) and \( \sin(2\theta) = \frac{\sqrt{2}}{2} \). - At \( \theta = \frac{\pi}{16} \), \( 2\theta = \frac{\pi}{8} \) and \( \sin(2\theta) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2} \). To find the minimum, we evaluate \( \sin^8(2\theta) \): The minimum occurs at \( \theta = \frac{\pi}{8} \): \[ L_2 = \binom{16}{8} \cdot 2^8 \cdot \left( \frac{\sqrt{2}}{2} \right)^8 = \binom{16}{8} \cdot 2^8 \cdot \frac{1}{16} = \frac{\binom{16}{8} \cdot 2^8}{16} \] ### Step 7: Calculate \( \frac{L_2}{L_1} \) Now we find the ratio: \[ \frac{L_2}{L_1} = \frac{\frac{\binom{16}{8} \cdot 2^8}{16}}{\binom{16}{8} \cdot 2^8} = \frac{1}{16} \] ### Final Answer Thus, the value of \( \frac{L_2}{L_1} \) is: \[ \boxed{16} \]

To solve the problem, we need to find the least values of the term independent of \( x \) in the expansion of \[ \left( \frac{x}{\cos \theta} + \frac{1}{x \sin \theta} \right)^{16} \] for two different ranges of \( \theta \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

if A=( theta :2 cos^(2)theta + sin theta le 2)and b= {theta :(pi)/(2)le theta le (3pi)/(2)}, then A cap B is equal to

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.

Find the general solution of tan ^(2) theta = (1)/(3), and hence find those values of theta for which - pi le theta le pi.