Home
Class 12
MATHS
If A(i,j) be the coefficient of a^i b^j ...

If `A_(i,j)` be the coefficient of `a^i b^j c^(2010-i-j)` in the expansion of `(a+b+c)^2010`, then

A

(a) `A_(i,i)` is defined for `i ge 1010`

B

(b) `A_(i,j)=A_(j,i)`

C

(c) `A_(2i,3i)` is defined for `i ge 405`

D

(d) `A_(0,1)=2000`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficient \( A_{i,j} \) of \( a^i b^j c^{2010-i-j} \) in the expansion of \( (a+b+c)^{2010} \). ### Step-by-Step Solution: 1. **Understanding the Expansion**: The expansion of \( (a+b+c)^{2010} \) can be expressed using the multinomial theorem. The general term in the expansion is given by: \[ \frac{2010!}{i! j! k!} a^i b^j c^k \] where \( k = 2010 - i - j \). 2. **Identifying the Coefficient**: The coefficient \( A_{i,j} \) corresponds to the term where \( a \) is raised to the power \( i \), \( b \) to the power \( j \), and \( c \) to the power \( 2010 - i - j \). Thus, we can write: \[ A_{i,j} = \frac{2010!}{i! j! (2010 - i - j)!} \] 3. **Conditions for Validity**: For \( A_{i,j} \) to be defined, the following conditions must be satisfied: - \( i + j + k = 2010 \) (which is satisfied by the definition of \( k \)) - \( i, j, k \geq 0 \) (which implies \( i \leq 2010 \), \( j \leq 2010 \), and \( 2010 - i - j \geq 0 \) or \( i + j \leq 2010 \)) 4. **Analyzing the Options**: - **Option A**: \( A_{i,i} \) is defined for \( i \geq 1010 \). - Here, \( A_{i,i} \) would require \( 2i \leq 2010 \), which implies \( i \leq 1005 \). Thus, this option is incorrect. - **Option B**: \( A_{i,j} = A_{j,i} \). - From the formula, we see that \( A_{i,j} = \frac{2010!}{i! j! (2010 - i - j)!} \) and \( A_{j,i} = \frac{2010!}{j! i! (2010 - j - i)!} \). Since both expressions are equal, this option is correct. - **Option C**: \( A_{2i,3i} \) is defined for \( i \geq 405 \). - For \( A_{2i,3i} \), we need \( 5i \leq 2010 \), which implies \( i \leq 402 \). Thus, this option is incorrect. - **Option D**: \( A_{0,1} = 2000 \). - Here, \( A_{0,1} = \frac{2010!}{0! 1! 2009!} = \frac{2010}{1} = 2010 \). Thus, this option is incorrect. ### Conclusion: The only correct option is **Option B**: \( A_{i,j} = A_{j,i} \).

To solve the problem, we need to find the coefficient \( A_{i,j} \) of \( a^i b^j c^{2010-i-j} \) in the expansion of \( (a+b+c)^{2010} \). ### Step-by-Step Solution: 1. **Understanding the Expansion**: The expansion of \( (a+b+c)^{2010} \) can be expressed using the multinomial theorem. The general term in the expansion is given by: \[ \frac{2010!}{i! j! k!} a^i b^j c^k ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Let A=([a_(i j)])_(3xx3) be a matrix such that AA^T=4Ia n da_(i j)+2c_(i j)=0,w h e r ec_(i j) is the cofactor of a_(i j)a n dI is the unit matrix of order 3. |a_(11)+4a_(12)a_(13)a_(21)a_(22)+4a_(23)a_(31)a_(32)a_(33)+4|+5lambda|a_(11)+1a_(12)a_(13)a_(21)a_(22)+1a_(23)a_(31)a_(32)a_(33)+1|=0 then the value of 10lambda is _______.

For a 2xx2 matrix A=[a_(i j)] whose elements are given by a_(i j)=i/j , write the value of a_(12) .

For a\ 2\ xx\ 2\ matrix, A=[a_(i j)], whose elements are given by a_(i j)=i/j , write the value of a_(12)dot

Let P=[a_(i j)] be a 3xx3 matrix and let Q=[b_(i j)],w h e r eb_(i j)=2^(i+j)a_(i j)for1lt=i ,jlt=3. If the determinant of P is 2, then the determinant of the matrix Q is 2^(10) b. 2^(11) c. 2^(12) d. 2^(13)

If A=[a_(i j)] is a square matrix of even order such that a_(i j)=i^2-j^2 , then (a) A is a skew-symmetric matrix and |A|=0 (b) A is symmetric matrix and |A| is a square (c) A is symmetric matrix and |A|=0 (d) none of these

Let a=2i−j+k,b=i+2j−k and c=i+j−2k be three vectors. A vector in the plane of b and c whose projection on a is of magnitude (sqrt3/2) ​ ​ is

Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec a a n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k