Home
Class 12
MATHS
The value of sum(r=1)^n(sum(p=0)^(r-1) ^...

The value of `sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p)` is equal to (a) `4^(n)-3^(n)+1` (b) `4^(n)-3^(n)-1` (c) `4^(n)-3^(n)+2` (d) `4^(n)-3^(n)`

A

`4^(n)-3^(n)+1`

B

`4^(n)-3^(n)-1`

C

`4^(n)-3^(n)+2`

D

`4^(n)-3^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=1}^{n} \sum_{p=0}^{r-1} \binom{n}{r} \binom{r}{p} 2^p \] ### Step 1: Rewrite the Inner Summation We start with the inner summation: \[ \sum_{p=0}^{r-1} \binom{r}{p} 2^p \] This can be recognized as a binomial expansion. The sum can be rewritten using the binomial theorem: \[ \sum_{p=0}^{r} \binom{r}{p} 2^p = (1 + 2)^r = 3^r \] However, since we are summing up to \(r-1\), we need to subtract the last term: \[ \sum_{p=0}^{r-1} \binom{r}{p} 2^p = 3^r - \binom{r}{r} 2^r = 3^r - 2^r \] ### Step 2: Substitute Back into the Outer Summation Now, we substitute this back into the outer summation: \[ \sum_{r=1}^{n} \binom{n}{r} (3^r - 2^r) \] This can be split into two separate summations: \[ \sum_{r=1}^{n} \binom{n}{r} 3^r - \sum_{r=1}^{n} \binom{n}{r} 2^r \] ### Step 3: Evaluate Each Summation Using the binomial theorem, we know: \[ \sum_{r=0}^{n} \binom{n}{r} x^r = (1+x)^n \] Thus, we can evaluate our summations: 1. For \(x = 3\): \[ \sum_{r=0}^{n} \binom{n}{r} 3^r = (1 + 3)^n = 4^n \] 2. For \(x = 2\): \[ \sum_{r=0}^{n} \binom{n}{r} 2^r = (1 + 2)^n = 3^n \] Now, we need to subtract the \(r=0\) term from both summations: - For \(x = 3\): \[ \sum_{r=1}^{n} \binom{n}{r} 3^r = 4^n - \binom{n}{0} 3^0 = 4^n - 1 \] - For \(x = 2\): \[ \sum_{r=1}^{n} \binom{n}{r} 2^r = 3^n - \binom{n}{0} 2^0 = 3^n - 1 \] ### Step 4: Combine the Results Now we can combine the results from both summations: \[ \sum_{r=1}^{n} \binom{n}{r} 3^r - \sum_{r=1}^{n} \binom{n}{r} 2^r = (4^n - 1) - (3^n - 1) \] This simplifies to: \[ 4^n - 3^n \] ### Final Answer Thus, the final value of the original expression is: \[ \boxed{4^n - 3^n} \]

To solve the problem, we need to evaluate the expression: \[ \sum_{r=1}^{n} \sum_{p=0}^{r-1} \binom{n}{r} \binom{r}{p} 2^p \] ### Step 1: Rewrite the Inner Summation We start with the inner summation: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

If f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r "^rC_s , then f(3) =