Home
Class 12
MATHS
If sum(r=0)^(n){("^(n)C(r-1))/('^(n)C(r ...

If `sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24)`, then `n` is equal to (a) 3 (b) 4 (c) 5 (d) 6

A

`3`

B

`4`

C

`5`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression and find the value of \( n \) such that: \[ \sum_{r=0}^{n} \left( \frac{nC_{r-1}}{nC_{r} + nC_{r-1}} \right)^3 = \frac{25}{24} \] ### Step 1: Rewrite the Expression We start by rewriting the term inside the summation: \[ \frac{nC_{r-1}}{nC_{r} + nC_{r-1}} = \frac{nC_{r-1}}{nC_{r} + nC_{r-1}} = \frac{1}{\frac{nC_{r}}{nC_{r-1}} + 1} \] ### Step 2: Simplify the Binomial Coefficients Using the property of binomial coefficients, we know: \[ \frac{nC_{r}}{nC_{r-1}} = \frac{n-r+1}{r} \] So we can rewrite our expression as: \[ \frac{nC_{r-1}}{nC_{r} + nC_{r-1}} = \frac{1}{\frac{n-r+1}{r} + 1} = \frac{r}{n+1} \] ### Step 3: Substitute Back into the Summation Now substituting this back into our summation gives us: \[ \sum_{r=0}^{n} \left( \frac{r}{n+1} \right)^3 = \frac{1}{(n+1)^3} \sum_{r=0}^{n} r^3 \] ### Step 4: Use the Formula for the Sum of Cubes The formula for the sum of the cubes of the first \( n \) natural numbers is: \[ \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \] Thus, we can write: \[ \sum_{r=0}^{n} r^3 = 0^3 + \left( \frac{n(n+1)}{2} \right)^2 = \left( \frac{n(n+1)}{2} \right)^2 \] ### Step 5: Substitute the Sum into the Equation Substituting this back into our equation gives: \[ \frac{1}{(n+1)^3} \cdot \left( \frac{n(n+1)}{2} \right)^2 = \frac{25}{24} \] ### Step 6: Simplify the Equation This simplifies to: \[ \frac{n^2(n+1)^2}{4(n+1)^3} = \frac{25}{24} \] Cancelling \( (n+1)^2 \) from the numerator and denominator, we have: \[ \frac{n^2}{4(n+1)} = \frac{25}{24} \] ### Step 7: Cross Multiply to Solve for \( n \) Cross multiplying gives: \[ 24n^2 = 100(n + 1) \] ### Step 8: Rearranging the Equation Rearranging the equation leads to: \[ 24n^2 - 100n - 100 = 0 \] ### Step 9: Solving the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 24, b = -100, c = -100 \): \[ n = \frac{100 \pm \sqrt{(-100)^2 - 4 \cdot 24 \cdot (-100)}}{2 \cdot 24} \] Calculating the discriminant: \[ n = \frac{100 \pm \sqrt{10000 + 9600}}{48} \] \[ n = \frac{100 \pm \sqrt{19600}}{48} \] \[ n = \frac{100 \pm 140}{48} \] Calculating the two possible values: 1. \( n = \frac{240}{48} = 5 \) 2. \( n = \frac{-40}{48} \) (not valid since \( n \) must be non-negative) Thus, the only valid solution is: \[ n = 5 \] ### Final Answer The value of \( n \) is: \[ \boxed{5} \]

To solve the given problem, we need to evaluate the expression and find the value of \( n \) such that: \[ \sum_{r=0}^{n} \left( \frac{nC_{r-1}}{nC_{r} + nC_{r-1}} \right)^3 = \frac{25}{24} \] ### Step 1: Rewrite the Expression We start by rewriting the term inside the summation: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :