Home
Class 12
MATHS
("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+(...

`("^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+..=0` if and only if for some positive integer `k`, `m=` (a) 4k (b) 4k+1 (c) 4k-1 (d) 4k+2

A

`4k`

B

`4k+1`

C

`4k-1`

D

`4k+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the expression: \[ \left( \binom{m}{0} + \binom{m}{1} - \binom{m}{2} - \binom{m}{3} \right) + \left( \binom{m}{4} + \binom{m}{5} - \binom{m}{6} - \binom{m}{7} \right) + \ldots = 0 \] We will use the properties of binomial coefficients and complex numbers to derive the conditions under which this expression equals zero. ### Step 1: Consider the Binomial Expansion We start with the binomial expansion of \( (x + y)^m \) and \( (x - y)^m \): \[ (x + y)^m = \sum_{k=0}^{m} \binom{m}{k} x^{m-k} y^k \] \[ (x - y)^m = \sum_{k=0}^{m} \binom{m}{k} x^{m-k} (-y)^k \] ### Step 2: Add and Subtract the Expansions Let \( x = \cos \theta \) and \( y = i \sin \theta \). Then we have: \[ (\cos \theta + i \sin \theta)^m = e^{i m \theta} \] \[ (\cos \theta - i \sin \theta)^m = e^{-i m \theta} \] Adding these two equations gives: \[ 2 \cos(m \theta) = \sum_{k=0}^{m} \binom{m}{k} \cos^{m-k} \theta (i \sin \theta)^k + \sum_{k=0}^{m} \binom{m}{k} \cos^{m-k} \theta (-i \sin \theta)^k \] ### Step 3: Simplify the Expression The terms with odd powers of \( \sin \theta \) will cancel out when adding, while the even powers will remain. Thus, we can express the sum as: \[ 2 \cos(m \theta) = \sum_{k \text{ even}} \binom{m}{k} \cos^{m-k} \theta (-1)^{k/2} \sin^k \theta \] ### Step 4: Analyze the Given Series The series in the problem can be interpreted as a combination of terms from the binomial expansion where we group the coefficients based on their parity. ### Step 5: Set the Condition for Zero For the entire expression to equal zero, we need the coefficients of the series to satisfy certain conditions. This leads to the conclusion that: \[ m - 1 = 4k \quad \text{for some integer } k \] ### Step 6: Solve for \( m \) From the equation \( m - 1 = 4k \), we can express \( m \) as: \[ m = 4k + 1 \] ### Conclusion Thus, the value of \( m \) that satisfies the original equation is: \[ \boxed{4k + 1} \]

To solve the given problem, we need to analyze the expression: \[ \left( \binom{m}{0} + \binom{m}{1} - \binom{m}{2} - \binom{m}{3} \right) + \left( \binom{m}{4} + \binom{m}{5} - \binom{m}{6} - \binom{m}{7} \right) + \ldots = 0 \] We will use the properties of binomial coefficients and complex numbers to derive the conditions under which this expression equals zero. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

Find the radius of a circle, if its area is (a) 4\ pi\ c m^2 (b) 55. 44\ m^2 (c) 1. 54\ k m^2

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

The freezing point of 0.05 m solution of glucose in water is (K1 = 1.86°C m^(-1) )