Home
Class 12
MATHS
The value of sum(r=0)^(3n-1)(-1)^r ^(6n...

The value of `sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r` is

A

`2^(3n)`

B

`2^(2n-1)`

C

`2^(6n-1)`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem: **Question:** Find the value of the summation \( \sum_{r=0}^{3n-1} (-1)^r \binom{6n}{2r+1} 3^r \). ### Step-by-step Solution: 1. **Rewrite the Summation:** We start with the given summation: \[ S = \sum_{r=0}^{3n-1} (-1)^r \binom{6n}{2r+1} 3^r \] 2. **Use Complex Numbers:** We can express \( (-1)^r \) in terms of complex exponentials. We know that: \[ (-1)^r = \left( \frac{1}{\sqrt{3}} i \right)^{2r} \cdot \left( \sqrt{3} i \right)^{2r + 1} \] Thus, we can rewrite the summation as: \[ S = \sum_{r=0}^{3n-1} \frac{1}{\sqrt{3} i} \binom{6n}{2r+1} \left( \sqrt{3} i \right)^{2r + 1} \] 3. **Factor Out the Constant:** The constant \( \frac{1}{\sqrt{3} i} \) can be factored out of the summation: \[ S = \frac{1}{\sqrt{3} i} \sum_{r=0}^{3n-1} \binom{6n}{2r+1} \left( \sqrt{3} i \right)^{2r + 1} \] 4. **Recognize the Binomial Expansion:** The summation can be interpreted as the imaginary part of the expansion of \( (1 + \sqrt{3} i)^{6n} \): \[ (1 + \sqrt{3} i)^{6n} = 2^{6n} \left( \cos(6n \cdot \frac{\pi}{3}) + i \sin(6n \cdot \frac{\pi}{3}) \right) \] 5. **Evaluate the Cosine and Sine:** We know that: \[ \cos(6n \cdot \frac{\pi}{3}) = \cos(2n\pi) = 1 \] and \[ \sin(6n \cdot \frac{\pi}{3}) = \sin(2n\pi) = 0 \] 6. **Combine Results:** Therefore, the imaginary part of \( (1 + \sqrt{3} i)^{6n} \) is: \[ \text{Imaginary part} = 0 \] 7. **Final Result:** Putting it all together, we find: \[ S = \frac{1}{\sqrt{3} i} \cdot 0 = 0 \] ### Conclusion: The value of the summation \( \sum_{r=0}^{3n-1} (-1)^r \binom{6n}{2r+1} 3^r \) is \( \boxed{0} \).

To solve the problem: **Question:** Find the value of the summation \( \sum_{r=0}^{3n-1} (-1)^r \binom{6n}{2r+1} 3^r \). ### Step-by-step Solution: 1. **Rewrite the Summation:** We start with the given summation: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)