Home
Class 12
MATHS
The value of "^(12)C(2)+^(13)C(3)+^(14)C...

The value of `"^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989)` is

A

`"^(1000)C_(11)-12`

B

`"^(1000)C_(11)+12`

C

`"^(900)C_(11)-12`

D

`"^(1000)C_(989)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( ^{12}C_{2} + ^{13}C_{3} + ^{14}C_{4} + \ldots + ^{999}C_{989} \), we can use the properties of binomial coefficients. ### Step-by-step Solution: 1. **Identify the pattern in the binomial coefficients**: The given expression is a sum of binomial coefficients starting from \( ^{12}C_{2} \) to \( ^{999}C_{989} \). We can rewrite this in a more general form: \[ \sum_{n=12}^{999} {n \choose n-10} \] This is equivalent to: \[ \sum_{n=12}^{999} {n \choose 2} \] 2. **Use the Hockey Stick Identity**: According to the Hockey Stick Identity in combinatorics, we have: \[ \sum_{k=r}^{n} {k \choose r} = {n+1 \choose r+1} \] In our case, we can set \( r = 2 \) and \( n = 999 \): \[ \sum_{k=2}^{999} {k \choose 2} = {1000 \choose 3} \] 3. **Adjust the limits of the summation**: We need to adjust our summation to start from \( 12 \): \[ \sum_{k=12}^{999} {k \choose 2} = {1000 \choose 3} - \sum_{k=2}^{11} {k \choose 2} \] 4. **Calculate the sum from \( k=2 \) to \( k=11 \)**: We can calculate \( \sum_{k=2}^{11} {k \choose 2} \): \[ {2 \choose 2} + {3 \choose 2} + {4 \choose 2} + \ldots + {11 \choose 2} \] This is: \[ 1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 = 220 \] 5. **Calculate \( {1000 \choose 3} \)**: Using the formula for combinations: \[ {1000 \choose 3} = \frac{1000 \times 999 \times 998}{3 \times 2 \times 1} = 166167000 \] 6. **Combine the results**: Now we can substitute back into our equation: \[ \sum_{k=12}^{999} {k \choose 2} = {1000 \choose 3} - 220 = 166167000 - 220 = 166166780 \] Thus, the final answer is: \[ \boxed{166166780} \]

To solve the problem \( ^{12}C_{2} + ^{13}C_{3} + ^{14}C_{4} + \ldots + ^{999}C_{989} \), we can use the properties of binomial coefficients. ### Step-by-step Solution: 1. **Identify the pattern in the binomial coefficients**: The given expression is a sum of binomial coefficients starting from \( ^{12}C_{2} \) to \( ^{999}C_{989} \). We can rewrite this in a more general form: \[ \sum_{n=12}^{999} {n \choose n-10} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

The value of .^(13)C_(7)+.^(13)C_(8)+.^(13)C_(9)+.^(13)C_(10)+.^(13)C_(11)+.^(13)C_(12)+.^(13)C_(13) is equal to

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The value of the sum ""^(1000)C_(50) + ""^(999)C_(49) +""^(998)C_(48)+"…."""^(950)C_(0) is

The value of "^20 C_0+^(20)C_1+^(20)C_2+^(20)C_3+^(20)C_4+^(20)C_ 12+^(20)C_ 13+^(20)C_14+^(20)C_15 is a. 2^(19)-(( "^(20)C_10 + "^(20)C_9))/2 b. 2^(19)-((^(20)C 10+2xx^(20)C9))/2 c. 2^(19)-(^(20)C 10)/2 d. none of these

If p^(4)+q^(3)=2(p gt 0, q gt 0) , then the maximum value of term independent of x in the expansion of (px^((1)/(12))+qx^(-(1)/(9)))^(14) is (a) "^(14)C_(4) (b) "^(14)C_(6) (c) "^(14)C_(7) (d) "^(14)C_(12)

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

if n>=2, ""^(n+1)C_(2)+2(""^(2)C_(2)+""^(3)C_(2)+""^(4)C_(2)+....+""^(n)C_(2)) Value is:-