Home
Class 12
MATHS
If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +......

If `(1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50` then `a_0 + a_2 + a_4 + ... + a_50` is :

A

even

B

odd and of the form `3n`

C

odd and of the form `(3n-1)`

D

odd and of the form `(3n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the even powers of \( x \) in the expansion of \( (1 + x + x^2)^{25} \). The coefficients of the polynomial can be represented as \( a_0, a_1, a_2, \ldots, a_{50} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \( (1 + x + x^2)^{25} \). This can be expanded using the binomial theorem. 2. **Finding the Total Sum of Coefficients**: To find \( a_0 + a_1 + a_2 + \ldots + a_{50} \), we can substitute \( x = 1 \): \[ (1 + 1 + 1^2)^{25} = (3)^{25} \] This gives us the total sum of all coefficients. 3. **Finding the Sum of Even Coefficients**: To find the sum of the coefficients of the even powers, we can use the substitution \( x = -1 \): \[ (1 - 1 + (-1)^2)^{25} = (1)^{25} = 1 \] This gives us the alternating sum of the coefficients, which can be expressed as: \[ a_0 - a_1 + a_2 - a_3 + \ldots + a_{50} = 1 \] 4. **Setting Up the Equations**: Let \( S_e \) be the sum of the coefficients of even powers and \( S_o \) be the sum of the coefficients of odd powers. From the previous steps, we have: \[ S_e + S_o = 3^{25} \] \[ S_e - S_o = 1 \] 5. **Solving the System of Equations**: We can solve these two equations: - Adding both equations: \[ 2S_e = 3^{25} + 1 \implies S_e = \frac{3^{25} + 1}{2} \] - Subtracting the second equation from the first: \[ 2S_o = 3^{25} - 1 \implies S_o = \frac{3^{25} - 1}{2} \] 6. **Final Result**: The sum of the coefficients of the even powers \( a_0 + a_2 + a_4 + \ldots + a_{50} \) is: \[ S_e = \frac{3^{25} + 1}{2} \] ### Summary: Thus, the final answer is: \[ \boxed{\frac{3^{25} + 1}{2}} \]

To solve the problem, we need to find the sum of the coefficients of the even powers of \( x \) in the expansion of \( (1 + x + x^2)^{25} \). The coefficients of the polynomial can be represented as \( a_0, a_1, a_2, \ldots, a_{50} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \( (1 + x + x^2)^{25} \). This can be expanded using the binomial theorem. 2. **Finding the Total Sum of Coefficients**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

If (1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16 , then a_1 +a_3 + a_5 + ……+a_15 = ?

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12) , then find a_2+ a_4 + ... + a_12

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)