Home
Class 12
MATHS
The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C...

The sum `S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k)`, where `n=1,2,….` is

A

`(-1)^(n)*"^(3n-1)C_(n-1)`

B

`(-1)^(n)*"^(3n-1)C_(n)`

C

`(-1)n*"^(3n-1)C_(n+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \[ S_n = \sum_{k=0}^{n} (-1)^k \binom{3n}{k} \] where \( n = 1, 2, \ldots \). ### Step-by-Step Solution: 1. **Understanding the Sum**: The sum can be expressed as: \[ S_n = \binom{3n}{0} - \binom{3n}{1} + \binom{3n}{2} - \binom{3n}{3} + \ldots + (-1)^n \binom{3n}{n} \] 2. **Using the Binomial Theorem**: The Binomial Theorem states that: \[ (1 + x)^m = \sum_{k=0}^{m} \binom{m}{k} x^k \] By substituting \( x = -1 \), we get: \[ (1 - 1)^{3n} = \sum_{k=0}^{3n} \binom{3n}{k} (-1)^k = 0 \] 3. **Splitting the Sum**: We can separate the terms in the sum: \[ 0 = \sum_{k=0}^{3n} \binom{3n}{k} (-1)^k = \sum_{k=0}^{n} \binom{3n}{k} (-1)^k + \sum_{k=n+1}^{3n} \binom{3n}{k} (-1)^k \] The first sum is \( S_n \) and the second sum can be rewritten using the property of binomial coefficients. 4. **Using the Identity**: We can use the identity: \[ \binom{m}{k} = \binom{m-1}{k-1} + \binom{m-1}{k} \] This allows us to express \( S_n \) in terms of smaller binomial coefficients. 5. **Final Expression**: After simplification, we find that: \[ S_n = (-1)^n \binom{3n-1}{n} \] ### Final Result: Thus, the sum \( S_n \) can be expressed as: \[ S_n = (-1)^n \binom{3n-1}{n} \]

To solve the problem, we need to evaluate the sum \[ S_n = \sum_{k=0}^{n} (-1)^k \binom{3n}{k} \] where \( n = 1, 2, \ldots \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Evaluate sum_(i=0)^(n)sum_(j=0)^(n)sum_(k=0)^(n)((n),(i))((n),(j))((n),(k)), where((n),(r))=""^(n)C_(r) : (a) is less than 500 if n = 3 (b) is greater than 600 if n = 3 (c) is less than 5000 if n = 4 (d) is greater than 4000 if n = 4

Prove that sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)