Home
Class 12
MATHS
The value of 99^(50) - 99.98^(50) + (99...

The value of ` 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 ` is

A

`0`

B

`-1`

C

`-2`

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `99^(50)-99.98^(50)+(99.98)/(1.2)(97)^(50)-....+99`
`=^(99)C_(0)99^(50)-^(99)C_(1)(99-1)^(50)+^(99)C_(2)(99-2)^(50)-....+^(99)C_(98)(99-98)^(50)+^(99)C_(99)(99-99)^(50)`
`=99^(50)('^(99)C_(0)-^(99)C_(1)+^(99)C_(2)-^(99)C_(3)+...)+^(50)C_(1)*99^(49)('^(99)C_(1)-2*^(99)C_(2)+3*^(99)C_(3)-....)+....`
`=0+0+0+....+0=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

The value of int_(0)^(2pi) cos^(99)x dx , is

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Which is larger : (99^(50)+100^(50)) or (101)^(50) .

Evaluate: (-99) div 1

The predecessor of -99 is (a) -98 (b) -100 (c) 98 (d) 100

If H_n=1+1/2+...+1/ndot , then the value of S_n=1+3/2+5/3+...+(99)/(50) is a. H_(50)+50 b. 100-H_(50) c. 49+H_(50) d. H_(50)+100

The number of real solutions of the equation 4x^(99) +5x^(98) + 4x^(97) + 5x^(96) + …..+ 4x + 5 =0 is (1) 1 (2) 5 (3) 7 (4) 97

Factorise 99x^(2)-202xy+99y^(2) .

Evaluate 9 + 99 + 999 +……… upto n terms.