Home
Class 12
MATHS
Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 ...

Let `f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2` then the value of f(5) equals

A

`1000`

B

`1250`

C

`1750`

D

`2500`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) = \sum_{k=1}^{n} k^2 \binom{n}{k}^2 \) for \( n = 5 \). ### Step-by-Step Solution: 1. **Substitute \( n = 5 \)**: \[ f(5) = \sum_{k=1}^{5} k^2 \binom{5}{k}^2 \] 2. **Expand the summation**: \[ f(5) = 1^2 \binom{5}{1}^2 + 2^2 \binom{5}{2}^2 + 3^2 \binom{5}{3}^2 + 4^2 \binom{5}{4}^2 + 5^2 \binom{5}{5}^2 \] 3. **Calculate each term**: - For \( k = 1 \): \[ 1^2 \binom{5}{1}^2 = 1 \cdot 5^2 = 25 \] - For \( k = 2 \): \[ 2^2 \binom{5}{2}^2 = 4 \cdot \left(\frac{5 \cdot 4}{2 \cdot 1}\right)^2 = 4 \cdot 10^2 = 400 \] - For \( k = 3 \): \[ 3^2 \binom{5}{3}^2 = 9 \cdot \left(\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1}\right)^2 = 9 \cdot 10^2 = 900 \] - For \( k = 4 \): \[ 4^2 \binom{5}{4}^2 = 16 \cdot 5^2 = 16 \cdot 25 = 400 \] - For \( k = 5 \): \[ 5^2 \binom{5}{5}^2 = 25 \cdot 1^2 = 25 \] 4. **Sum all the terms**: \[ f(5) = 25 + 400 + 900 + 400 + 25 \] \[ f(5) = 25 + 400 = 425 \] \[ f(5) = 425 + 900 = 1325 \] \[ f(5) = 1325 + 400 = 1725 \] \[ f(5) = 1725 + 25 = 1750 \] 5. **Final Result**: \[ f(5) = 1750 \] ### Summary: The value of \( f(5) \) is \( 1750 \).

To solve the problem, we need to evaluate the function \( f(n) = \sum_{k=1}^{n} k^2 \binom{n}{k}^2 \) for \( n = 5 \). ### Step-by-Step Solution: 1. **Substitute \( n = 5 \)**: \[ f(5) = \sum_{k=1}^{5} k^2 \binom{5}{k}^2 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

Let S_n=sum_(k=1)^(4n)(-1)(k(k+1))/2k^2dot Then S_n can take value (s) 1056 b. 1088 c. 1120 d. 1332

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

Let A_(1) , A_(2) ,…..,A_(n) ( n lt 2) be the vertices of regular polygon of n sides with its centre at he origin. Let veca_(k) be the position vector of the point A_(k) ,k = 1,2,….,n if |sum_(k=1)^(n-1) (veca_(k) xx veca_(k) +1)|=|sum_(k=1)^(n-1) (vecak.vecak+1)| then the minimum value of n is

Let S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k) What is the value of sum _( n =1) ^( 99) (1)/( S _(n ) + S _( n -1)) ?=

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :