Home
Class 12
MATHS
The value of sum(r=1)^(n)(-1)^(r-1)((r )...

The value of `sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r )` is (a) `1/(n+1)` (b) `1/n` (c) `1/(n-1)` (d) 0

A

`(1)/(n+1)`

B

`(1)/(n)`

C

`(1)/(n-1)`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{r=1}^{n} (-1)^{r-1} \frac{r}{r+1} \binom{n}{r} \] ### Step 1: Rewrite the term \(\frac{r}{r+1}\) We can rewrite \(\frac{r}{r+1}\) as follows: \[ \frac{r}{r+1} = 1 - \frac{1}{r+1} \] ### Step 2: Substitute into the summation Substituting this back into the summation gives us: \[ \sum_{r=1}^{n} (-1)^{r-1} \left(1 - \frac{1}{r+1}\right) \binom{n}{r} \] This can be split into two separate summations: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} - \sum_{r=1}^{n} (-1)^{r-1} \frac{1}{r+1} \binom{n}{r} \] ### Step 3: Evaluate the first summation The first summation is: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} \] This is equal to: \[ (-1)^{0} \binom{n}{0} = 1 \] ### Step 4: Evaluate the second summation Now we need to evaluate: \[ \sum_{r=1}^{n} (-1)^{r-1} \frac{1}{r+1} \binom{n}{r} \] Using the identity \(\frac{1}{r+1} \binom{n}{r} = \frac{1}{n+1} \binom{n+1}{r+1}\), we can rewrite the second summation as: \[ \frac{1}{n+1} \sum_{r=1}^{n} (-1)^{r-1} \binom{n+1}{r+1} \] By changing the index of summation, we can let \(k = r + 1\), which gives us: \[ \sum_{k=2}^{n+1} (-1)^{k-2} \binom{n+1}{k} \] This can be simplified to: \[ (-1)^{0} \binom{n+1}{0} - \sum_{k=1}^{n+1} (-1)^{k-1} \binom{n+1}{k} = 1 - 0 = 1 \] ### Step 5: Combine the results Combining both parts, we have: \[ 1 - \frac{1}{n+1} \cdot 1 = 1 - \frac{1}{n+1} = \frac{n}{n+1} \] ### Final Result Thus, the value of the original summation is: \[ \frac{1}{n+1} \] ### Conclusion The final answer is: \[ \boxed{\frac{1}{n+1}} \]

To solve the problem, we need to evaluate the summation: \[ \sum_{r=1}^{n} (-1)^{r-1} \frac{r}{r+1} \binom{n}{r} \] ### Step 1: Rewrite the term \(\frac{r}{r+1}\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .