Home
Class 12
MATHS
Let t(100)=sum(r=0)^(100)(1)/(("^(100)C(...

Let `t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5))` and `S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5))`, then the value of `(100t_(100))/(S_(100))` is (a) 1 (b) 2 (c) 3 (d) 4

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions \( T_{100} \) and \( S_{100} \) and find the value of \( \frac{100 T_{100}}{S_{100}} \). ### Step 1: Define the expressions We have: \[ T_{100} = \sum_{r=0}^{100} \frac{1}{\left( \binom{100}{r} \right)^5} \] \[ S_{100} = \sum_{r=0}^{100} \frac{r}{\left( \binom{100}{r} \right)^5} \] ### Step 2: Rewrite \( S_{100} \) We can rewrite \( S_{100} \) by expressing \( r \) in terms of \( 100 - (100 - r) \): \[ S_{100} = \sum_{r=0}^{100} \frac{100 - (100 - r)}{\left( \binom{100}{r} \right)^5} \] This can be separated into two sums: \[ S_{100} = \sum_{r=0}^{100} \frac{100}{\left( \binom{100}{r} \right)^5} - \sum_{r=0}^{100} \frac{100 - r}{\left( \binom{100}{r} \right)^5} \] ### Step 3: Combine the sums Notice that the second sum is just \( S_{100} \) again: \[ S_{100} = 100 T_{100} - S_{100} \] Adding \( S_{100} \) to both sides gives: \[ 2 S_{100} = 100 T_{100} \] ### Step 4: Solve for \( \frac{100 T_{100}}{S_{100}} \) From the equation \( 2 S_{100} = 100 T_{100} \), we can express \( \frac{100 T_{100}}{S_{100}} \): \[ \frac{100 T_{100}}{S_{100}} = 2 \] ### Conclusion Thus, the value of \( \frac{100 T_{100}}{S_{100}} \) is: \[ \boxed{2} \]

To solve the problem, we need to evaluate the expressions \( T_{100} \) and \( S_{100} \) and find the value of \( \frac{100 T_{100}}{S_{100}} \). ### Step 1: Define the expressions We have: \[ T_{100} = \sum_{r=0}^{100} \frac{1}{\left( \binom{100}{r} \right)^5} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum__(r=1)^(50) (""^(50)C_(r))^(2), R = sum_(r=0)^(100) (-1)^(r) (""^(100)C_(r))^(2) The value of P - Q is equal to

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Find the sum of the series sum_(r=0)^(50)(""^(100-r)C_(25))/(100-r)

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

Prove that ^100 C_0^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[^(200)C_(98)-^(100)C_(49)]dot

Let f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt , then f(2pi)=