Home
Class 12
MATHS
Let S(1)=underset(0 le i lt j le 100)(su...

Let `S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j)`, `S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j)` and `S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j)` where `C_(r )` represents cofficient of `x^(r )` in the binomial expansion of `(1+x)^(100)`
If `S_(1)+S_(2)+S_(3)=a^(b)` where `a`, `b in N`, then the least value of `(a+b)` is

A

`66`

B

`72`

C

`46`

D

`52`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions for \( S_1 \), \( S_2 \), and \( S_3 \) and then combine them to find \( S_1 + S_2 + S_3 \). ### Step 1: Understanding the coefficients The coefficients \( C_r \) represent the coefficients of \( x^r \) in the binomial expansion of \( (1+x)^{100} \). According to the binomial theorem, we have: \[ C_r = \binom{100}{r} \] for \( r = 0, 1, 2, \ldots, 100 \). ### Step 2: Expressing \( S_1 \), \( S_2 \), and \( S_3 \) We can express \( S_1 \), \( S_2 \), and \( S_3 \) as follows: - \( S_1 = \sum_{0 \leq i < j \leq 100} C_i C_j \) - \( S_2 = \sum_{0 \leq j < i \leq 100} C_i C_j \) - \( S_3 = \sum_{0 \leq i = j \leq 100} C_i C_j = \sum_{0 \leq i \leq 100} C_i^2 \) ### Step 3: Combining \( S_1 \), \( S_2 \), and \( S_3 \) Notice that \( S_1 \) and \( S_2 \) can be combined: \[ S_1 + S_2 = \sum_{0 \leq i \neq j \leq 100} C_i C_j \] Thus, we can express the total sum as: \[ S_1 + S_2 + S_3 = \sum_{0 \leq i, j \leq 100} C_i C_j = \left( \sum_{i=0}^{100} C_i \right)^2 \] ### Step 4: Calculating the total sum The sum \( \sum_{i=0}^{100} C_i \) is simply: \[ \sum_{i=0}^{100} C_i = (1 + 1)^{100} = 2^{100} \] Thus, we have: \[ S_1 + S_2 + S_3 = (2^{100})^2 = 2^{200} \] ### Step 5: Expressing \( S_1 + S_2 + S_3 \) in the form \( a^b \) We can express \( 2^{200} \) in the form \( a^b \): \[ 2^{200} = (4^{100}) = (16^{50}) = (32^{40}) \] This gives us multiple representations of \( S_1 + S_2 + S_3 \). ### Step 6: Finding the least value of \( a + b \) Now we calculate \( a + b \) for each representation: - For \( 4^{100} \): \( a = 4, b = 100 \) → \( a + b = 104 \) - For \( 16^{50} \): \( a = 16, b = 50 \) → \( a + b = 66 \) - For \( 32^{40} \): \( a = 32, b = 40 \) → \( a + b = 72 \) The least value of \( a + b \) is: \[ \min(104, 66, 72) = 66 \] ### Final Answer Thus, the least value of \( a + b \) is \( \boxed{66} \). ---

To solve the problem, we need to analyze the expressions for \( S_1 \), \( S_2 \), and \( S_3 \) and then combine them to find \( S_1 + S_2 + S_3 \). ### Step 1: Understanding the coefficients The coefficients \( C_r \) represent the coefficients of \( x^r \) in the binomial expansion of \( (1+x)^{100} \). According to the binomial theorem, we have: \[ C_r = \binom{100}{r} \] for \( r = 0, 1, 2, \ldots, 100 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A_(i,j) be the coefficient of a^i b^j c^(2010-i-j) in the expansion of (a+b+c)^2010 , then

Evaluate sum_(0 le i le j le 10) ""^(21)C_(i) * ""^(21)C_(j) .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the following sums : (i) sumsum_(inej) ""^(n)C_(i).""^(n)C_(j) , (ii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) . (iii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .