Home
Class 12
MATHS
If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...

If `"^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28` , then `n` is equal to ……

A

`7`

B

`8`

C

`9`

D

`11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ ^{n}C_{0} - ^{n}C_{1} + ^{n}C_{2} - ^{n}C_{3} + \ldots + (-1)^{r} \cdot ^{n}C_{r} = 28, \] we can use the concept of binomial coefficients and the binomial theorem. ### Step-by-Step Solution: 1. **Understanding the Expression**: The given expression can be rewritten using the binomial theorem. The sum can be expressed as: \[ \sum_{k=0}^{r} (-1)^{k} \cdot ^{n}C_{k} = (1 - 1)^{n} + \text{(higher order terms)} \] 2. **Using Binomial Theorem**: The expression can be simplified using the binomial expansion: \[ (1 - 1)^{n} = 0^{n} = 0 \quad \text{(for } n > 0\text{)} \] However, we need to consider the terms up to \( r \): \[ \sum_{k=0}^{r} (-1)^{k} \cdot ^{n}C_{k} = (-1)^{r} \cdot ^{n-1}C_{r} \quad \text{(if } r < n\text{)} \] 3. **Setting Up the Equation**: We can equate this to the given value: \[ (-1)^{r} \cdot ^{n-1}C_{r} = 28 \] 4. **Considering the Sign**: Since the left side can be either positive or negative depending on \( r \), we can assume \( r \) is even (to keep the left side positive): \[ ^{n-1}C_{r} = 28 \] 5. **Finding Combinations**: We need to find \( n \) such that: \[ ^{n-1}C_{r} = 28 \] 6. **Finding Possible Values**: The value 28 can be expressed as: \[ ^{8}C_{2} = \frac{8 \times 7}{2 \times 1} = 28 \] This means \( n-1 = 8 \) and thus \( n = 9 \). ### Final Answer: \[ n = 9 \]

To solve the equation \[ ^{n}C_{0} - ^{n}C_{1} + ^{n}C_{2} - ^{n}C_{3} + \ldots + (-1)^{r} \cdot ^{n}C_{r} = 28, \] we can use the concept of binomial coefficients and the binomial theorem. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to