Home
Class 12
MATHS
If the value of "^(n)C(0)+2*^(n)C(1)+3*^...

If the value of `"^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576`, then `n` is (a) 7 (b) 5 (c) 6 (d) 9

A

`7`

B

`5`

C

`6`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( n \) such that: \[ ^{n}C_{0} + 2 \cdot ^{n}C_{1} + 3 \cdot ^{n}C_{2} + \ldots + (n+1) \cdot ^{n}C_{n} = 576 \] ### Step 1: Understand the expression The expression can be interpreted using the Binomial Theorem. The term \( k \cdot ^{n}C_{k-1} \) can be derived from differentiating the binomial expansion. ### Step 2: Use the Binomial Theorem Recall that: \[ (1 + x)^n = \sum_{k=0}^{n} ^{n}C_{k} x^k \] ### Step 3: Multiply by \( x \) Multiplying both sides by \( x \): \[ x(1 + x)^n = \sum_{k=0}^{n} ^{n}C_{k} x^{k+1} \] ### Step 4: Differentiate both sides Now differentiate both sides with respect to \( x \): \[ \frac{d}{dx}[x(1 + x)^n] = (1 + x)^n + nx(1 + x)^{n-1} \] The right side becomes: \[ \sum_{k=0}^{n} k \cdot ^{n}C_{k} x^{k} \] ### Step 5: Set \( x = 1 \) Setting \( x = 1 \): \[ (1 + 1)^n + n(1 + 1)^{n-1} = \sum_{k=0}^{n} k \cdot ^{n}C_{k} \] This simplifies to: \[ 2^n + n \cdot 2^{n-1} \] ### Step 6: Equate to 576 Now we have: \[ 2^n + n \cdot 2^{n-1} = 576 \] ### Step 7: Factor out \( 2^{n-1} \) Factoring out \( 2^{n-1} \): \[ 2^{n-1}(2 + n) = 576 \] ### Step 8: Solve for \( n \) Dividing both sides by \( 2^{n-1} \): \[ 2 + n = \frac{576}{2^{n-1}} \] ### Step 9: Test possible values of \( n \) We can test the options given in the question: 1. **For \( n = 5 \)**: \[ 2 + 5 = 7 \quad \Rightarrow \quad 2^{4} = 16 \quad \Rightarrow \quad 7 \cdot 16 = 112 \quad \text{(not equal to 576)} \] 2. **For \( n = 6 \)**: \[ 2 + 6 = 8 \quad \Rightarrow \quad 2^{5} = 32 \quad \Rightarrow \quad 8 \cdot 32 = 256 \quad \text{(not equal to 576)} \] 3. **For \( n = 7 \)**: \[ 2 + 7 = 9 \quad \Rightarrow \quad 2^{6} = 64 \quad \Rightarrow \quad 9 \cdot 64 = 576 \quad \text{(correct)} \] 4. **For \( n = 9 \)**: \[ 2 + 9 = 11 \quad \Rightarrow \quad 2^{8} = 256 \quad \Rightarrow \quad 11 \cdot 256 = 2816 \quad \text{(not equal to 576)} \] ### Conclusion The value of \( n \) that satisfies the equation is: \[ \boxed{7} \]

To solve the problem, we need to evaluate the expression given and find the value of \( n \) such that: \[ ^{n}C_{0} + 2 \cdot ^{n}C_{1} + 3 \cdot ^{n}C_{2} + \ldots + (n+1) \cdot ^{n}C_{n} = 576 \] ### Step 1: Understand the expression The expression can be interpreted using the Binomial Theorem. The term \( k \cdot ^{n}C_{k-1} \) can be derived from differentiating the binomial expansion. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is (a) 5 (b) 6 (c) 8 (d) 10

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is