Home
Class 12
MATHS
The value of ((50),(6))-((5),(1))((40),(...

The value of `((50),(6))-((5),(1))((40),(6))+((5)/(2))((30),(6))-((5),(3))((20),(6))+((5),(4))((10),(6))` where `((n),(r ))` denotes `"^(n)C_(r )`, is

A

`15625`

B

`0`

C

`1000000`

D

`2250000`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \binom{50}{6} - \binom{5}{1}\binom{40}{6} + \frac{5}{2}\binom{30}{6} - \binom{5}{3}\binom{20}{6} + \binom{5}{4}\binom{10}{6} \] we will use the Binomial Theorem and properties of binomial coefficients. ### Step 1: Rewrite the expression using binomial coefficients The expression consists of binomial coefficients, which we can denote as: \[ \binom{50}{6} - 5 \cdot \binom{40}{6} + \frac{5}{2} \cdot \binom{30}{6} - 10 \cdot \binom{20}{6} + 5 \cdot \binom{10}{6} \] ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, we can express \((1 + x)^n\) as: \[ (1 + x)^{50} = \sum_{k=0}^{50} \binom{50}{k} x^k \] ### Step 3: Calculate the coefficients We need to find the coefficients of \(x^6\) in the expansions of the following: 1. \( (1 + x)^{50} \) 2. \( (1 + x)^{40} \) 3. \( (1 + x)^{30} \) 4. \( (1 + x)^{20} \) 5. \( (1 + x)^{10} \) ### Step 4: Set up the expression Using the coefficients from the expansions, we can rewrite the expression as: \[ \text{Coefficient of } x^6 \text{ in } (1 + x)^{50} - 5 \cdot \text{Coefficient of } x^6 \text{ in } (1 + x)^{40} + \frac{5}{2} \cdot \text{Coefficient of } x^6 \text{ in } (1 + x)^{30} - 10 \cdot \text{Coefficient of } x^6 \text{ in } (1 + x)^{20} + 5 \cdot \text{Coefficient of } x^6 \text{ in } (1 + x)^{10} \] ### Step 5: Calculate the coefficients Using the formula \(\binom{n}{r}\): - Coefficient of \(x^6\) in \((1 + x)^{50}\) is \(\binom{50}{6}\) - Coefficient of \(x^6\) in \((1 + x)^{40}\) is \(\binom{40}{6}\) - Coefficient of \(x^6\) in \((1 + x)^{30}\) is \(\binom{30}{6}\) - Coefficient of \(x^6\) in \((1 + x)^{20}\) is \(\binom{20}{6}\) - Coefficient of \(x^6\) in \((1 + x)^{10}\) is \(\binom{10}{6}\) ### Step 6: Substitute back into the expression Now substituting these coefficients back into the expression gives: \[ \binom{50}{6} - 5 \cdot \binom{40}{6} + \frac{5}{2} \cdot \binom{30}{6} - 10 \cdot \binom{20}{6} + 5 \cdot \binom{10}{6} \] ### Step 7: Calculate the final value Now we can calculate each binomial coefficient: 1. \(\binom{50}{6} = 15,890,700\) 2. \(\binom{40}{6} = 3,838,380\) 3. \(\binom{30}{6} = 593,775\) 4. \(\binom{20}{6} = 38,760\) 5. \(\binom{10}{6} = 210\) Substituting these values into the expression: \[ 15,890,700 - 5 \cdot 3,838,380 + \frac{5}{2} \cdot 593,775 - 10 \cdot 38,760 + 5 \cdot 210 \] Calculating each term: - \(15,890,700\) - \(- 19,191,900\) - \( \frac{5}{2} \cdot 593,775 = 1,484,437.5\) - \(- 387,600\) - \(1,050\) Now summing these values: \[ 15,890,700 - 19,191,900 + 1,484,437.5 - 387,600 + 1,050 = 2254 \] ### Final Answer The value of the expression is: \[ \boxed{2254} \]

To solve the expression \[ \binom{50}{6} - \binom{5}{1}\binom{40}{6} + \frac{5}{2}\binom{30}{6} - \binom{5}{3}\binom{20}{6} + \binom{5}{4}\binom{10}{6} \] we will use the Binomial Theorem and properties of binomial coefficients. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

What is the value of tan[(1)/(2)cos^(-1)((3)/(5))]+tan[(1)/(2)cos^(-1)((4)/(5))]? (a) (5)/(6) (b) (-5)/(6) (c) (1)/(2) (d) 0

The value of (2^(m).3^(2m-n).5^(m+n+3).6^(n+1))/(6^(m+1).10^(n+3).15^(m))

Simplify: find the value of n (n)/(2)-(3n)/(4)+(5n)/(6)=21

The value of (pi^2)/(1n3)int_(7/6)^(5/6)sec(pix)dxi s____

Simplify: a. (2^(3))^(6) b. (3^(4))^(7) c. (10^(15))^(30) d. (6^(12))/(9^(12)) e. (16^(5))/(6^(5))

The least value of natural number n such that ((n-1),(5))+((n-1),(6))lt((n),(7))," where"((n),(r))=(n!)/((n-r)!r!),is

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not ? (i) R={(4,1),(5,1),(6,7)} (ii) R={(2,3),(2,5),(3,3),(6,6)} (iii) R={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} (iv) R={(1,1),(2,1),(3,1),(4,1),(5,1)}

If (1)/(""^(4)C_(n))=(1)/(""^(5)C_(n))+(1)/(""^(6)C_(n)) , then value of n is:

The value of sqrt(6+sqrt(6+sqrt(6+))) ..........is (a) 4 (b) 3 (c) -2 (d) 3.5