Home
Class 12
MATHS
The value of the expansion (sumsum)(0 le...

The value of the expansion `(sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=`

A

`"^(2n-1)C_(n)`

B

`"^(2n)C_(n)`

C

`"^(2n+1)C_(n)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let the required value be `S`
`sum_(j=0)^(n)sum_(i=0)^(n)(-1)^(i+j-1)'^(n)C_(i)*^(n)C_(j)=sum_(i=0)^(n)(-1)^(2i-1)('^(n)C_(i))^(2)+2S`
`:.0=-sum_(i=0)^(n)('^(n)C_(i))^(2)+2S`
`:.2S=^(2n)C_(n)`
`:.S=^(2n-1)C_(n-1)=^(2n-1)C_(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Evaluate sum_(0 le i le j le 10) ""^(21)C_(i) * ""^(21)C_(j) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

If (1+x)^n=C_(0)+C_(1)x+C_(2)x^2+….+C_(n)x^n then prove that (SigmaSigma)_(0 le i lt j le n ) C_(i)C_(j)^2=(n-1)^(2n)C_(n)+2^(2n)

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n then the value of sumsum_(0lt=iltjlt=n)C_iC_j is (A) 2^(2n-1)- .^(2n)C_(n/2) (B) .^(2n)C_n (C) 2^n (D) none of these

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .