Home
Class 12
MATHS
sum(m=1)^(n)(sum(k=1)^(m)(sum(p=k)^(m)"^...

`sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=`

A

`3^(n)-2^(n)`

B

`4^(n)-3^(n)`

C

`3^(n)+2^(n)`

D

`4^(n)-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)(sum_(p=k)^(m)(m!)/(p!(m-p)!)*(p!)/(k!(p-k)!)))`
`=sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)(sum_(p=k)^(m)'^(m-k)C_(p-k))(m!)/(k!(m-k)!))`
`=sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)2^(m-k)*^(m)C_(k))`
`=sum_(m=1)^(n)'^(n)C_(m)((1+2)^(m)-2^(m))=sum_(m=1)^(n)('^(n)C_(m)3^(m)-^(n)C_(m)2^(m))`
`=(1+3)^(n)-1-(1+2)^(n)+1=4^(n)-3^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

("^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+..=0 if and only if for some positive integer k , m= (a) 4k (b) 4k+1 (c) 4k-1 (d) 4k+2

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

sum_(p=1)^(n) sum_(m=p)^(n) (("n"),("m"))(("m"),("p")) is equal to

sum_(k=m)^n kC_r

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If sum_(k=1)^(n) (sum_(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e , then

The mean deviation for n observations x_(1),x_(2)…….x_(n) from their median M is given by (i) sum_(i=1)^(n)(x_(i)-M) (ii) (1)/(n)sum_(i=1)^(n)|x_(i)-M| (iii) (1)/(n)sum_(i=1)^(n)(x_(i)-M)^(2) (iv) (1)/(n)sum_(i=1)^(n)(x_(i)-M)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)