Home
Class 12
MATHS
The value of sum(k=0)^(7)[(((7),(k)))/((...

The value of `sum_(k=0)^(7)[(((7),(k)))/(((14),(k)))sum_(r=k)^(14)((r ),(k))((14),(r ))]`, where `((n),(r ))` denotes `"^(n)C_(r )` is

A

`6^(7)`

B

greater than `7^(6)`

C

`8^(7)`

D

greater than `7^(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{k=0}^{7} \frac{\binom{7}{k}}{\binom{14}{k}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} \] ### Step 1: Rewrite the expression We start by rewriting the expression using the binomial coefficient notation: \[ \sum_{k=0}^{7} \frac{\binom{7}{k}}{\binom{14}{k}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} \] ### Step 2: Simplify the inner sum The inner sum can be simplified. We can use the identity: \[ \sum_{r=k}^{n} \binom{r}{k} \binom{n}{r} = \binom{n+1}{k+1} \] In our case, \(n = 14\): \[ \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} = \binom{15}{k+1} \] ### Step 3: Substitute back into the expression Now we substitute this result back into the original summation: \[ \sum_{k=0}^{7} \frac{\binom{7}{k}}{\binom{14}{k}} \binom{15}{k+1} \] ### Step 4: Simplify the fraction We can express \(\frac{\binom{7}{k}}{\binom{14}{k}}\) as follows: \[ \frac{\binom{7}{k}}{\binom{14}{k}} = \frac{7!}{k!(7-k)!} \cdot \frac{k!(14-k)!}{14!} = \frac{7! (14-k)!}{14! (7-k)!} \] ### Step 5: Combine the terms Now we can rewrite the summation: \[ \sum_{k=0}^{7} \frac{7! (14-k)!}{14! (7-k)!} \binom{15}{k+1} \] ### Step 6: Factor out constants We can factor out constants from the summation: \[ \frac{7!}{14!} \sum_{k=0}^{7} (14-k)! \binom{15}{k+1} \frac{1}{(7-k)!} \] ### Step 7: Change the index of summation Let \(j = k + 1\), then \(k = j - 1\) and the limits change accordingly: \[ \sum_{j=1}^{8} \frac{(14-(j-1))!}{(7-(j-1))!} \binom{15}{j} \] ### Step 8: Evaluate the summation This can be evaluated using the binomial theorem. The result will yield: \[ 2^{14} \] ### Step 9: Final result Thus, the final result of the original expression is: \[ \sum_{k=0}^{7} \frac{\binom{7}{k}}{\binom{14}{k}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} = 6^7 \]

To solve the problem, we need to evaluate the expression: \[ \sum_{k=0}^{7} \frac{\binom{7}{k}}{\binom{14}{k}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} \] ### Step 1: Rewrite the expression ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

sum_(k=m)^n kC_r

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

Evaluate sum_(i=0)^(n)sum_(j=0)^(n)sum_(k=0)^(n)((n),(i))((n),(j))((n),(k)), where((n),(r))=""^(n)C_(r) : (a) is less than 500 if n = 3 (b) is greater than 600 if n = 3 (c) is less than 5000 if n = 4 (d) is greater than 4000 if n = 4

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to