Home
Class 12
MATHS
If ((1-3x)^(1//2)+(1-x)^(5//3))/(sqrt(4-...

If `((1-3x)^(1//2)+(1-x)^(5//3))/(sqrt(4-x))` is approximately equal to `a+bx` for small values of `x`, then `(a,b) ` is (a) `(1,35/24)` (b) `(1/-35/24)` (c) `(2,35/12)` (d) `(2,-35/12)`

A

`(1,(35)/(24))`

B

`(1,-(35)/(24))`

C

`(2,(35)/(12))`

D

`(2,-(35)/(12))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \(\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{\sqrt{4-x}}\) for small values of \(x\) and find the coefficients \(a\) and \(b\) such that the expression is approximately equal to \(a + bx\). ### Step 1: Simplify the Denominator The denominator is \(\sqrt{4-x}\). For small values of \(x\), we can use the binomial expansion: \[ \sqrt{4-x} = \sqrt{4(1 - \frac{x}{4})} = 2\sqrt{1 - \frac{x}{4}} \approx 2\left(1 - \frac{x}{8}\right) = 2 - \frac{x}{4} \] **Hint:** Use the binomial expansion for \((1-u)^n\) where \(u = \frac{x}{4}\) and \(n = \frac{1}{2}\). ### Step 2: Simplify the Numerator Now, we simplify the numerator \((1-3x)^{1/2} + (1-x)^{5/3}\). 1. For \((1-3x)^{1/2}\): \[ (1-3x)^{1/2} \approx 1 - \frac{3x}{2} \] 2. For \((1-x)^{5/3}\): \[ (1-x)^{5/3} \approx 1 - \frac{5}{3}x \] Combining these, we have: \[ (1-3x)^{1/2} + (1-x)^{5/3} \approx \left(1 - \frac{3x}{2}\right) + \left(1 - \frac{5}{3}x\right) = 2 - \left(\frac{3}{2} + \frac{5}{3}\right)x \] **Hint:** Use the binomial expansion for both terms and combine like terms. ### Step 3: Combine the Numerator and Denominator Now we combine the simplified numerator and denominator: \[ \frac{2 - \left(\frac{3}{2} + \frac{5}{3}\right)x}{2 - \frac{x}{4}} \] Calculating \(\frac{3}{2} + \frac{5}{3}\): \[ \frac{3}{2} = \frac{9}{6}, \quad \frac{5}{3} = \frac{10}{6} \quad \Rightarrow \quad \frac{3}{2} + \frac{5}{3} = \frac{19}{6} \] Thus, the numerator becomes: \[ 2 - \frac{19}{6}x \] Now, substituting back: \[ \frac{2 - \frac{19}{6}x}{2 - \frac{x}{4}} \approx \frac{2(1 - \frac{19}{12}x)}{2(1 - \frac{x}{8})} = \frac{1 - \frac{19}{12}x}{1 - \frac{x}{8}} \] Using the expansion for \((1-u)^{-1}\): \[ \approx \left(1 - \frac{19}{12}x\right)\left(1 + \frac{x}{8}\right) \approx 1 - \frac{19}{12}x + \frac{x}{8} \] **Hint:** Use the formula \((1-u)(1+v) \approx 1 + (v-u)\) for small \(u\) and \(v\). ### Step 4: Combine Terms Now, we need to combine the coefficients of \(x\): \[ -\frac{19}{12} + \frac{1}{8} = -\frac{19}{12} + \frac{3}{24} = -\frac{38}{24} + \frac{3}{24} = -\frac{35}{24} \] ### Final Result Thus, the expression simplifies to: \[ 1 - \frac{35}{24}x \] From this, we can identify \(a = 1\) and \(b = -\frac{35}{24}\). ### Conclusion The values of \(a\) and \(b\) are: \[ (a, b) = \left(1, -\frac{35}{24}\right) \] ### Answer The correct option is (b) \((1, -\frac{35}{24})\).

To solve the problem, we need to simplify the expression \(\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{\sqrt{4-x}}\) for small values of \(x\) and find the coefficients \(a\) and \(b\) such that the expression is approximately equal to \(a + bx\). ### Step 1: Simplify the Denominator The denominator is \(\sqrt{4-x}\). For small values of \(x\), we can use the binomial expansion: \[ \sqrt{4-x} = \sqrt{4(1 - \frac{x}{4})} = 2\sqrt{1 - \frac{x}{4}} \approx 2\left(1 - \frac{x}{8}\right) = 2 - \frac{x}{4} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 8: x :: 16 : 35 Find the value of x (a) 35 (b) 70 (c) (35)/2 (d) 24

If 5:4 :: 30 : x , then the value of x is (a) 24 (b) 12 (c) 3/2 (d) 6

If 1/3+1/2+1/x=4, then x=? (a) 5/(18) (b) 6/(19) (c) (18)/5 (d) (24)/(11)

If 12^(4+2x^(2)) = (24sqrt(3))^(3x^(2)-2) , then x is equal to

The values of x satisfying (log)_3(x^2+4x+12)=2 are (a) 2,-4 (b) 1,-3 (c) -1,3 (d) -1,-3

i) (1.2)^3 ii) (3.5)^3

If x=(7+5sqrt(2))^(1/3) -1/((7+5sqrt(2))^(1/3) , then the value of x^3+3x-14 is equal to 1 (b) 0 (c) 2 (d) 4

If x=(7+5sqrt(2))^(1/3)-1/((7+5sqrt(2))^(1/3)) , then the value of x^3+3x-14 is equal to 1 b. 0 c. 2 d. 4

If 3x+2/x=7, then (9x^2-4/(x^2))=? (a)25 (b) 35 (c) 49 (d) 30