Home
Class 12
MATHS
The sum of the series 1 + (1)/(3^(2))...

The sum of the series
`1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., ` is (a) `((3)/(2))^((1)/(3))` (b) `((5)/(4))^((1)/(3))` (c) `((3)/(2))^((1)/(6))` (d) None of these

A

`((3)/(2))^((1)/(3))`

B

`((5)/(4))^((1)/(3))`

C

`((3)/(2))^((1)/(6))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ 1 + \frac{1}{3^2} + \frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^4} + \frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} \cdot \frac{1}{3^6} + \ldots \] we can analyze the pattern of the series. The series can be expressed in a general form where the \(n\)-th term can be represented as: \[ T_n = \frac{(3n-2)(3n-5)(3n-8)\ldots}{n!} \cdot \frac{1}{3^{2n}} \] This indicates that we can relate this series to the binomial theorem. ### Step 1: Identify the series structure The first term is 1, the second term is \(\frac{1}{3^2}\), and the third term is \(\frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^4}\). The general term can be identified as: \[ T_n = \frac{(3n-2)(3n-5)(3n-8)\ldots}{n!} \cdot \frac{1}{3^{2n}} \] ### Step 2: Relate to binomial expansion We can relate this series to the binomial expansion of \((1-x)^{-k}\) for some \(k\). The series resembles the expansion of \((1-x)^{-n}\) where \(x = \frac{1}{3^2}\). ### Step 3: Define \(x\) and \(n\) Let \(x = \frac{1}{9}\) (since \(3^2 = 9\)) and \(n = -\frac{1}{3}\). The binomial expansion gives: \[ (1-x)^{-n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} x^k \] ### Step 4: Substitute \(x\) and \(n\) Substituting \(x = \frac{1}{9}\) and \(n = -\frac{1}{3}\): \[ (1 - \frac{1}{9})^{\frac{1}{3}} = \left(\frac{8}{9}\right)^{\frac{1}{3}} \] ### Step 5: Simplify the expression Now we can simplify: \[ \left(\frac{8}{9}\right)^{\frac{1}{3}} = \frac{2}{3^{\frac{1}{3}}} \] ### Step 6: Final expression We can express the sum of the series as: \[ \left(\frac{3}{2}\right)^{\frac{1}{3}} \] ### Conclusion Thus, the sum of the series is: \[ \left(\frac{3}{2}\right)^{\frac{1}{3}} \] This corresponds to option (a). ---

To find the sum of the series \[ 1 + \frac{1}{3^2} + \frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^4} + \frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} \cdot \frac{1}{3^6} + \ldots \] we can analyze the pattern of the series. The series can be expressed in a general form where the \(n\)-th term can be represented as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

The sum of the infite series (1/3)^(2)+1/3(1/3)^(4)+1/5(1/3)^(6) +……..is

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

The sum to infinity of the series 1+2/3+6/(3^2)+(10)/(3^3)+(14)/(3^4). . . . . . is (1) 2 (2) 3 (3) 4 (4) 6

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series 1+(1+a)/(2!)+(1+a+a^(2))/(3!)+(1+a+a^(2)+a^(3))/(4!) +…..is

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :