Home
Class 12
MATHS
Let (2x^(2)+3x+4)^(10)=sum(r=0)^(20)a(r ...

Let `(2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r )`, then the value of `(a_(7))/(a_(13))` is (a) 6 (b) 8 (c) 12 (d) 16

A

`6`

B

`8`

C

`12`

D

`16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{a_7}{a_{13}} \) where \( a_r \) represents the coefficients of \( x^r \) in the expansion of \( (2x^2 + 3x + 4)^{10} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ (2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r \] Here, \( a_r \) are the coefficients of \( x^r \) in the expansion. 2. **Substituting \( x \) with \( \frac{2}{x} \)**: To find \( a_7 \) and \( a_{13} \), we substitute \( x \) with \( \frac{2}{x} \): \[ \left(2\left(\frac{2}{x}\right)^2 + 3\left(\frac{2}{x}\right) + 4\right)^{10} \] Simplifying this gives: \[ \left(\frac{8}{x^2} + \frac{6}{x} + 4\right)^{10} \] 3. **Combining Terms**: We can express this as: \[ \left(\frac{8 + 6x + 4x^2}{x^2}\right)^{10} = \frac{(8 + 6x + 4x^2)^{10}}{x^{20}} \] This means: \[ (2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r = \sum_{r=0}^{20} a_r 2^{r-10} x^{20-r} \] 4. **Finding Coefficients**: From the expansion, the coefficient of \( x^7 \) corresponds to \( a_7 \) and the coefficient of \( x^{13} \) corresponds to \( a_{13} \). We can relate these coefficients: \[ a_7 = a_{20-13} \cdot 2^{13-10} = a_{13} \cdot 2^3 \] 5. **Calculating the Ratio**: Therefore, we have: \[ \frac{a_7}{a_{13}} = 2^3 = 8 \] 6. **Final Answer**: The value of \( \frac{a_7}{a_{13}} \) is: \[ \boxed{8} \]

To solve the problem, we need to find the ratio \( \frac{a_7}{a_{13}} \) where \( a_r \) represents the coefficients of \( x^r \) in the expansion of \( (2x^2 + 3x + 4)^{10} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ (2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If (1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r ) , then value of a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39) is

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (1 +x + x^(2) + …+ x^(9))^(4) (x + x^(2) + x^(3) + … + x^(9)) = sum_(r=1)^(45) a_(r) x^(r) and the value of a_(2) + a_(6) + a_(10) + … + a_(42) " is " lambda the sum of all digits of lambda is .

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is