Home
Class 12
MATHS
"^(30)C(0)*^(20)C(10)+^(31)C(1)*^(19)C(1...

`"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10)` is equal to

A

`"^(51)C_(41)`

B

`"^(50)C_(40)`

C

`"^(51)C_(21)`

D

`"^(50)C_(40)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{30}{0} \cdot \binom{20}{10} + \binom{31}{1} \cdot \binom{19}{10} + \binom{32}{2} \cdot \binom{18}{10} + \ldots + \binom{40}{10} \cdot \binom{10}{10} \), we can use the concept of generating functions and the Binomial Theorem. ### Step 1: Identify the pattern in the expression The given expression consists of terms of the form \( \binom{30+k}{k} \cdot \binom{20-k}{10} \) for \( k = 0, 1, 2, \ldots, 10 \). ### Step 2: Rewrite the expression using generating functions We can rewrite the expression as a coefficient of \( x^{10} \) in the expansion of: \[ (1 + x)^{30} \cdot (1 + x)^{20} \] This is because \( \binom{n}{k} \) represents the coefficient of \( x^k \) in the expansion of \( (1 + x)^n \). ### Step 3: Combine the generating functions Thus, we have: \[ (1 + x)^{30} \cdot (1 + x)^{20} = (1 + x)^{50} \] ### Step 4: Find the coefficient of \( x^{10} \) We need to find the coefficient of \( x^{10} \) in \( (1 + x)^{50} \). By the Binomial Theorem, the coefficient of \( x^k \) in \( (1 + x)^n \) is given by \( \binom{n}{k} \). So, the coefficient of \( x^{10} \) in \( (1 + x)^{50} \) is: \[ \binom{50}{10} \] ### Step 5: Conclusion Thus, the value of the given expression is: \[ \binom{50}{10} \]

To solve the expression \( \binom{30}{0} \cdot \binom{20}{10} + \binom{31}{1} \cdot \binom{19}{10} + \binom{32}{2} \cdot \binom{18}{10} + \ldots + \binom{40}{10} \cdot \binom{10}{10} \), we can use the concept of generating functions and the Binomial Theorem. ### Step 1: Identify the pattern in the expression The given expression consists of terms of the form \( \binom{30+k}{k} \cdot \binom{20-k}{10} \) for \( k = 0, 1, 2, \ldots, 10 \). ### Step 2: Rewrite the expression using generating functions We can rewrite the expression as a coefficient of \( x^{10} \) in the expansion of: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be